

B.Tech-Electrical and Electronics Engineering(E.E.E) Course Structure

&

SYLLABUS

(2021-22 academic year)

(NECR B.Tech 21)

(w.e.f AY: 2021-22)

NARAYANA ENGINEERING COLLEGE::NELLORE

INSTITUTE VISION & MISSION

VISION

 To be one of the nation's premier Institutions for Technical and Management Education and a key contributor for Technological and Socio-economic Development of the Nation.

MISSION

- To produce technically competent Engineers and Managers by maintaining high academic standards, world class infrastructure and core instructions.
- To enhance innovative skills and multi disciplinary approach of students through well experienced faculty and industry interactions.
- To inculcate global perspective and attitude of students to face real world challenges by developing leadership qualities, lifelong learning abilities and ethical values.

Department of E.E.E -

(Electrical and Electronics Engineering)

DEPARTMENT VISION & MISSION

VISION OF THE DEPARTMENT

To impart knowledge in the field of Electrical and Electronics Engineering to meet the technical challenges of industry and society with strong innovative skills, leadership qualities and ethics.

MISSION OF THE DEPARTMENT

M1. To provide standard training and effective teaching learning process to the students by using the state-of-the-art laboratories, core instruction and efficient faculty.

M2. To enhance competent, innovative and technical skills amongst the students through training programs by industry and external participation.

M3. To inculcate leadership qualities, ethical values and lifelong learning skills in learners to serve the society and nation for overall development through value based education.

PEOs, POs, PSOs

POs

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use researchbased knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PEO 1: To solve composite problems using mathematics, basic sciences and engineering principles in the domains of testing, design and manufacturing.

PEO 2: To achieve higher positions in their profession by demonstrating leadership qualities, research and innovative abilities.

PEO 3: To contribute in the field of Electrical and Electronics Engineering to find solutions for societal problems through their lifelong learning skills and ethical values.

PSOs

PSO_1: Provide alternate solutions to address the problems with specific requirements in the field of Electrical and Electronics Engineering.

PSO_2: Be ready to work professionally in relevant industries like power systems, control systems and software industries

NARAYANA ENGINEERING COLLEGE::NELLORE

DEPARTMENT OF ELECTRICAL AND ELETRONICS ENGINEERING

Course Structure for B.Tech E.E.E w.e.f AY: 2021-22

Course	egory	Course Title	Contact Periods per week	edits	Scheme of	of Examinat Marks	ion Max.			
Code	Cate		L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total Marks
21MA1001	BS	Algebra and Calculus	3	1	0	4	4	40	60	100
21PH1001	BS	Applied Physics	3	0	0	3	3	40	60	100
21ES1003	ES	Basic Electrical Circuits	3	0	0	3	3	40	60	100
21ES1001	ES	Problem Solving and Programming	3	0	0	3	3	40	60	100
21PH1501	BS	Applied Physics Lab	0	0	3	3	1.5	40	60	100
21ES1506	ES	Basic Electrical Circuits Lab	0	0	2	2	1	40	60	100
21ES1505	ES	Engineering and IT Workshop	0	0	3	3	1.5	40	60	100
21ES1501	ES	Problem Solving and Programming Lab	0	0	3	3	1.5	40	60	100
21EN1502	HS	Communication skills lab	0	0	2	2	1	40	60	100
21MC8001	MC	Mandatory course I :Induction Program	Induction Program							
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semes				ter	20 Points		
		Total	12	1	16	29	19.5	360	540	900

SEMESTER I

Course Code	egory	Course Title	itle Contact Periods			edits	Schem N	e of Exam ⁄Iax. Marl	ination s	
	Cat		L	Т	Р	Tot al	Cr	Int. Marks	Ext. Marks	Total Marks
21CH1001	BS	Chemistry	3	0	0	3	3	40	60	100
21MA1003	BS	Vector Calculus Complex Variables and Transforms	3	1	0	4	4	40	60	100
21ES1005	ES	Python Programming and Data Science	3	0	0	3	3	40	60	100
21EN1001	HS	English	2	0	0	2	2	40	60	100
21CH1501	BS	Chemistry Lab	0	0	3	3	1.5	40	60	100
21ES1503	ES	Engineering Graphics	0	1	4	5	3	40	60	100
21ES1508	ES	Python Programming and Data Science Lab	0	0	3	3	1.5	40	60	100
21EN1501	HS	English Language Lab	0	0	3	3	1.5	40	60	100
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semes				ter	20 Points		
		Total	11	2	16	5 29	19.5	320	480	800

SEMESTER II

Department of E.E.E :: 2021-2022

SEMESTER III

Course Code	urse Code	ds per	edits	Scheme of Examination Max. Marks						
	Cat		L	Т	Р	Total	Cr	Int. Marks	Ext. Marks	Total Marks
21MA1006	BS	Probability Statistics and Numerical Methods	3	0	0	3	3	40	60	100
21ES1009	ES	Data Structures and Algorithms	3	0	0	3	3	40	60	100
21ES1010	ES	Electronic Devices and Circuits	3	0	0	3	3	40	60	100
21EE2001	PC	DC Machines and Transformers	3	0	0	3	3	40	60	100
21EE2002	PC	Electrical Circuit Analysis	2	0	0	2	2	40	60	100
21EE2003	PC	Power System Architecture	3	0	0	3	3	40	60	100
21ES1513	ES	Data Structures and Algorithms Lab	0	0	3	3	1.5	40	60	100
21ES1514	ES	Electronics Devices and Circuits Lab	0	0	2	2	1	40	60	100
21CD6001	SC	Career competency Development I	0	0	2	2	1	40	60	100
21CC6001	SC	Value added course/Certificate course I	0	0	0	0	1	40	60	100
21MC8002-13	MC	Mandatory course II	2	0	0	2	0			
		Counseling/Mentori ng	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semes			ter	20 Points		1	
		Total	19	0	10	29	21.5	400	600	1000

SEMESTER IV

Course	egory	Course Title	Con	tact (W	Perio /eek	ds per	edits	Scheme	of Examinat Marks	ion Max.
Code	Cat		L	Т	Р	Total	C	Int. Marks	Ext. Marks	Total Marks
21EN1002	HS	Universal Human Values	3	0	0	3	3	40	60	100
21EE2004	PC	AC Machines	3	0	0	3	3	40	60	100
21EE2005	PC	Analog Electronic Circuits	3	0	0	3	3	40	60	100
21EE2006	PC	Engineering Electromagnetics	3	0	0	3	3	40	60	100
21EE2007	PC	Linear Control Systems	3	0	0	3	3	40	60	100
	OE	Open elective I	3	0	0	3	3	40	60	100
21EE2501	PC	DC Machines and Transformers Lab	0	0	3	3	1.5	40	60	100
21EE2502	PC	Electrical Circuits and Simulation Lab	0	0	3	3	1.5	40	60	100
21EE2503	PC	Linear Control Systems and Simulation Lab	0	0	3	3	1.5	40	60	100
21CD6002	SC	Career competency Development II	0	0	2	2	1	40	60	100
21IC6001	SC	Industry Oriented Course I	0	0	0	0	1	100		100
		Counseling/Mentorin g	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester			ster		20 Points		
		Total	18	0	14	32	24.5	500	600	1100

SEMESTER V

Course Code	egory	Course Title	Co	ntact i w	Perio veek	ds per	edits	Scheme	of Examinati Marks	ion Max.
	Cat		L	Т	Р	Total	C	Int. Marks	Ext. Marks	Total Marks
21EE2008	PC	Digital Electronics and logic design	2	0	0	2	2	40	60	100
21EE2009	РС	Power Distribution and Distributed Generation	3	0	0	3	3	40	60	100
21EE2010	PC	Power Electronics	3	0	0	3	3	40	60	100
	OE	Open elective II	3	0	0	3	3	40	60	100
21EE4001-05	PE	Professional Elective I	3	0	0	3	3	40	60	100
21EE2504	PC	AC Machines Lab	0	0	3	3	1.5	40	60	100
21EE2505	PC	Analog Electronics and Simulation Lab	0	0	3	3	1.5	40	60	100
21EE2506	РС	Power Electronics and Simulation Lab	0	0	2	2	1	40	60	100
21CD6003	SC	Career competency Development III	0	0	2	2	1	40	60	100
21CC6002	SC	Value added course/Certificate Course II	0	0	0	0	1	40	60	100
21EE7501	PR	Internship/skill development Training I	0	0	0	0	1.5	00	100	100
21MC8002-13	MC	Mandatory course III	2	0	0	2	0	00	00	00
		Counseling/Mento ring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semes			ter		20 Points		
		Total	16	0	13	29	21.5	400	700	1100

Narayana Engineering College :: Nellore(Autonomous)

SEMESTER VI

Course Code	egory	Course Title	Contact Periods per week		Credits	Scheme of	f Examinati Marks	on Max.		
	Cat		L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
21EE2011	PC	Advanced Power System Analysis	3	0	0	3	3	40	60	100
21EE2012	PC	Electrical Measurements and Instrumentation	2	0	0	2	2	40	60	100
21EE2013	PC	Switch Gear and Protection	3	0	0	3	3	40	60	100
	OE	Open Elective III	3	0	0	3	3	40	60	100
21EE4006-10	PE	Professional Elective II	3	0	0	3	3	40	60	100
21EE40011- 15	PE	Professional elective III	3	0	0	3	3	40	60	100
21EE2507	PC	Electrical Measurements and Instrumentation Lab	0	0	2	2	1	40	60	100
21EE2508	PC	Power Systems Lab	0	0	3	3	1.5	40	60	100
21CD6004	SC	Career competency Development IV	0	0	2	2	1	40	60	100
21IC6002	SC	Industry Oriented Course II	0	0	0	0	1	100		100
		Counseling/Ment oring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semeste			r	20 Points			
		Total	17	0	10	27	21.5	460	540	1000

SEMESTER VII

Course Code	gory	Course Title	Contact Periods per week		edits	Scheme	e of Exami Iax. Mark	ination s		
course coue	Cate	course rice	L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total Marks
21EN5001-5	HS	Humanities and Social Science Elective	2	0	0	2	2	40	60	100
21EE2014	PC	Solid State Electric Drives	3	0	0	3	3	40	60	100
21EE2015	PC	Power System Operation and Control	3	0	0	3	3	40	60	100
	OE	Open Elective IV	3	0	0	3	3	40	60	100
21EE40016-20	PE	Professional elective IV	3	0	0	3	3	40	60	100
21EE40021-25	PE	Professional elective V	3	0	0	3	3	40	60	100
21EE2509	PC	Electronic systems design lab	0	0	2	2	1	40	60	100
21EE2510	PC	Power Systems Simulation Lab	0	0	3	3	1.5	40	60	100
21CD6005	SC	Career competency Development V	0	0	2	2	1	40	60	100
21CC6501	SC	Skill development Training	0	0	2	2	1	40	60	100
21EE7502	PR	Internship II/on job training/Com Ser Project	0	0	0	0	1.5	00	100	100
21MC8002-13	MC	Mandatory course IV	2	0	0	2	0			
		Counseling/Mentori	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semes			ter		20 Points		
		Total	19	0	12	31	23	400	700	1100

SEMESTER VIII

Course	egory	Course Title	Contact Periods per week		edits		Scheme Examir Max. N	of nation Iarks		
Code	Cat		L T P Total	Cr	Int. Marks	Ext. Marks	Total Marks			
21EE7503	PR	Project work, seminar and internship	0	0	0	0	12	60	140	200
			0	0	0	0	12	60	140	200

Department of E.E.E :: 2021-2022

OPEN ELECTIVES (OE) Offered by EEE Department

Department	Course Code	Open Elective
	21EE3001	Artificial Neural Networks and Fuzzy Logic
	21EE3002	Basic Electrical and Electronics Engineering
	21EE3003	Energy Audit and Demand side Management
Electrical and Electronics	21EE3004	Electrical Measurements and Instrumentation
Engineering	21EE3005	Utilization of Electrical Energy
	21EE3006	Industrial Automation Engineering
	21EE3007	Industrial Electrical Systems
	21EE3008	Renewable Energy Conversion Systems
	21EE3009	Power Quality

PROFESSIONAL ELECTIVES (PE)

Elective	Professional	Professional	Professional	Professional	Professional
Track/Group	Elective-1	Elective-2	Elective-3	Elective-4	Elective-5
Advanced Power systems	Industrial Electrical Systems (21EE4001)	Power System Planning (21EE4006)	Reactive Power Compensation and Management (21EE4011)	Power Quality (21EE4016)	Smart Grid Technologies (21EE4021)
Control Systems	System Modeling and Identification (21EE4002)	Advanced Control systems (21EE4007)	Digital Signal Processing (21EE4012)	Multivariable Control System (21EE4017)	Real Time Control System (21EE4022)
Electromechanical Systems	Machine Modeling and Analysis (21EE4003)	Electrical Machine Design (21EE4008)	Programmable Control Devices and Applications (21EE4013)	Hybrid Electrical Vehicles (21EE4018)	Automotive Electrical Engineering (21EE4023)
Energy Systems	Renewable Energy Conversion Systems (21EE4004)	Solar and Fuel Cell Energy Systems (21EE4009)	Wind and Biomass Energy Systems (21EE4014)	Utilization of Electrical Energy (21EE4019)	Energy Audit and Demand side Management (21EE4024)
Power Electronics	Advanced Power Electronics (21EE4005)	Advanced Electrical Drives (21EE4010)	HVDC and FACTS (21EE4015)	Advanced Power Converters (21EE4020)	Advanced Power Semiconductor Devices and Protection (21EE4025)

LIST OF HONOR SUBJECTS

S.NO	Course code	Course Name	L-T-P	Credits
1	21EEH001	Adaptive Control Systems	3-1-0	4
2	21EEH002	AC Drives	3-1-0	4
3	21EEH003	Advanced Power System Protection	3-1-0	4
4	21EEH004	Power System Wide area Monitoring and Control	3-1-0	4
5	21EEH005	Restructed Power Systems	3-1-0	4

LIST OF MINOR SUBJECTS

S.NO.	Course code	Course Name	L-T-P	Credits
1	21EEM001	Electrical Technology	3-1-0	4
2	21EEM002	Electrical Measurements and Instrumentation	3-1-0	4
3	21EEM003	Power System Architecture	3-1-0	4
4	21EEM004	Utilization of Electrical Energy	3-1-0	4
5	21EEM005	Linear Control Systems	3-1-0	4

Humanities and Social Science Elective

S. NO	Course code	Course Name	CREDITS
1	21EN1001	Managerial Economics & Financial Analysis	3
2	21EN1002	Management Science	3
3	21EN1003	E-Business	3
4	21EN1004	Organizational Behavior	3
5	21EN1005	Enterprise Resource Planning	3

PROFESSIONAL ELECTIVES (PE)

SEMESTER	Course code	SUBJECT	CREDITS
V Sem	21EE4001-05	Professional Elective I	3
VI Com	21EE4006-10	Professional Elective II	3
vi sem	21EE4011-15	Professional Elective III	3
	21EE4016-20	Professional Elective IV	3
VII Sem	21EE4021-25	Professional Elective V	3
		TOTAL	15

OPEN ELECTIVES (OE)

SEMESTER	SUBJECT	CREDITS
IV Sem	Open Elective I	3
V Sem	Open Elective II	3
VI Sem	Open Elective III	3
VII Sem	Open Elective IV	3
	TOTAL	12

SKILL ORIENTED COURSE (SC)

SEMESTER	Course code	SUBJECT	CREDITS
III Sem	21CD6001	Career Competency Development I	1
III Selli	21CC6001	Value Added Course/Certificate Course I	1
IV Sam	21CD6002	Career Competency Development II	1
IV Sem	Course codeSUBJECTCRED21CD6001Career Competency Development I121CC6001Value Added Course/Certificate Course I121CD6002Career Competency Development II121CC6001Industry Oriented Course I121CD6003Career Competency Development III121CC6002Value Added Course/Certificate Course II121CC6002Value Added Course/Certificate Course II121CC6002Industry Oriented Course II121CC6002Industry Oriented Course II121CC6002Industry Oriented Course II121CC6003Career Competency Development IV121CC6004Career Competency Development V121CC6501Skill Development Training1	1	
V Som	21CD6003	Career Competency Development III	1
v Selli	21CC6002	Course codeSUBJECTCI21CD6001Career Competency Development I121CC6001Value Added Course/Certificate Course I121CD6002Career Competency Development II121CC6001Industry Oriented Course I121CD6003Career Competency Development III121CC6002Value Added Course/Certificate Course II121CC6002Value Added Course/Certificate Course II121CC6002Industry Oriented Course II121CC6002Industry Oriented Course II121CC6003Career Competency Development V121CC6501Skill Development Training1TOTAL	1
VI Sam	21CD6004	Career Competency Development IV	1
vi Selli	21CC6002	codeSUBJECT001Career Competency Development I001Value Added Course/Certificate Course I002Career Competency Development II001Industry Oriented Course I003Career Competency Development III002Value Added Course/Certificate Course II004Career Competency Development IV005Career Competency Development V501Skill Development TrainingTOTAL	1
VII Som	21CD6005	Career Competency Development V	1
v II Selli	21CC6501	Skill Development Training	1
		TOTAL	10

PROJECT (PR)

SEMESTER	Course code	SUBJECT	CREDITS
V Sem	21EE7501	Internship I/on job training/Com Ser Project	1.5
VII Sem	21EE7502	Internship II/on job training/Com Ser Project	1.5
VIII Sem	21EE7503	Project work, seminar and internship	12
		TOTAL	15

HUMANITIES AND SOCIAL SCIENCES (HS)

SEMESTER	Course code	SUBJECT	CREDITS
Ι	21EN1502	Communication skills lab	1
Ш	21EN1001	English	2
11	21EN1501	English Language Lab	1.5
IV	21EN1002	Universal Human Values	3
VII	21EN5001-8	Humanities and social	2
V 11		Science Elective	Δ
		TOTAL	9.5

BASIC SCIENCES (BS)

SEMESTER	Course code	SUBJECT	CREDITS
	21MA1001	Algebra and Calculus	4
Ι	21PH1001	Applied Physics	3
	21PH1501	Applied Physics Lab	1.5
SEMESTER Court I 21MA 21PH 21PH 21PH 21PH 21PH 21CH II 21CH III 21CH III 21MA	21CH1001	Chemistry	3
	21MA1003	Vector Calculus, Complex Variables and	4
		Transforms	4
	21CH1501	Chemistry lab	1.5
III	21MA1006	Probability Statistics and Numerical Methods	3
		TOTAL	20

ENGINEERING SCIENCES (ES)

SEMESTER	Course code	SUBJECT	CREDITS
	21ES1003	Basic Electrical Circuits	3
	21ES1001	Problem Solving and Programming	3
Ι	21ES1506	Basic Electrical Circuits Lab	1
	21ES1505	Engineering and IT Workshop	1.5
	21ES1501	Problem Solving and Programming Lab	1.5
	21ES1005	Python Programming and Data Science	3
II	21ES1503	Engineering Graphics	3
	21ES1508	Course codeSUBJECTIES1003Basic Electrical CircuitsIES1001Problem Solving and ProgrammingIES1506Basic Electrical Circuits LabIES1505Engineering and IT WorkshopIES1501Problem Solving and Programming LabES1005Python Programming and Data ScienceES1503Engineering GraphicsIES1508Python Programming and Data ScienceLabES1009ES1009Data Structures and AlgorithmsES1513Data Structures and Algorithms LabIES1514Electronics Devices and Circuits LabIES1514Electronics Devices and Circuits Lab	1.5
	21ES1009	Data Structures and Algorithms	3
TIT	21ES1010	Electronic Devices and Circuits	3
111	21ES1513	Data Structures and Algorithms Lab	1.5
	21ES1514	Electronics Devices and Circuits Lab	1
		Total	26

PROFESSIONAL CORE (PC)

SEMESTER		SUBJECT	CREDITS
	21EE2001	DC Machines and Transformers	3
тт	21EE2002	Electrical Circuit Analysis	2
111	21EE2003	Power System Architecture	3
		8	
	21EE2004	AC Machines	3
	21EE2005	Analog Electronic Circuits	3
	21EE2006	Engineering Electromagnetics	3
	21EE2007	Linear Control Systems	3
IV	21EE2501	DC Machines and Transformers Lab	1.5
	21EE2502	Electrical Circuits and Simulation Lab	1.5
	21EE2503	Linear Control Systems and Simulation Lab	1.5
		16.5	
	21EE2008	Digital Electronics and logic design	2
V	21EE2009	Power Distribution and Distributed Generation	3
	21EE2010	Power Electronics	3
	21EE2504	AC Machines Lab	1.5
	21EE2505	Analog Electronics and Simulation Lab	1.5
	21EE2506	Power Electronics and Simulation Lab	1
		12	
	21EE2011	Advanced Power System Analysis	3
	21EE2012	Electrical Measurements and Instrumentation	2
VI	21EE2013	Switch Gear and Protection	3
	21EE2507	Electrical Measurements and Instrumentation Lab	1
	21EE2508	Power Systems Lab	1.5
		10.5	
	21EE2014	Solid State Electric Drives	3
	21EE2015	Power System Operation and Control	3
VII	21EE2509	Electronic systems design lab	1
[21EE2510	Power Systems Simulation Lab	1.5
		8.5	
		TOTAL	55.5

				CDEDI			ann			1	
S NO	CATEGORY		CREDITS PER SEMESTER								
0.110	CHILGONI	Ι	II	III	IV	V	VI	VII	VIII	creates	
1	HS	1	3.5		3			2		9.5	
2	BS	8.5	8.5	3						20	
3	ES	10	7.5	8.5						26	
4	PC			8	16.5	12	10.5	8.5		55.5	
5	PE					3	6	6		15	
6	OE				3	3	3	3		12	
7	SC			2	2	2	2	2		10	
8	PR					1.5		1.5	12	15	
	TOTAL	19.5	19.5	21.5	24.5	21.5	21.5	23	12	163	

Overall Credits

NARAYANA ENGINEERING COLLEGE: NELLORE											
I-B. Tech		ALGEBRA AND CALCULUS (21MA1001) R-2021									
Semester	Н	ours / Weel	K	Total	Credit	Max Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
Ι	3	1	0	64	4	40	60	100			
Pre-requis	ite: Intern	nediate Ma	thematics								
Course Ob	jectives:										
1.	To familia	arize the st	udents wi	ith the the	ory of ma	trices and	quadratic form	ns.			
2.	To analyz	e second o	order ordi	nary diffe	rential equ	ations.	1				
3.	To explain	the series	expansion	ns using m	ean value	theorems a	and the concept	s of			
	multivaria	ble calculı	ıs.	U			1				
4.	To summa	rize the n	rocedure	to solve th	ne partial d	differentia	l equations.				
5	To explain	n the stude	ent with m	athematic	cal tools n	eeded in e	evaluating mul	tiple			
	integrals a	nd its app	lications					p¢			
Course O	utcomes:	After suce	cessful con	mpletion of	of the cou	rse. the stu	udent will be a	ble to:			
CO 1	Make use t	he concepts	of Matrice	s to solve y	various En	gineering 1	problems.	(BL-3)			
CO 2	Identify di	fferent tyr	es of high	er order di	ifferential	equations	and their applic	cations in			
001	solving en	gineering	problems	•		•••••••••	and then applied	(BL-3)			
CO 3	Apply Mean	n value the	orems, Mul	ti variable o	calculus to	solve engir	neering problen	IS. (BL-3)			
CO 4	Apply a ran	ge of techn	iques for s	olutions of	first order	· Linear an	d non-Linear F	Partial			
	Differentia	- Equation	s (PDE).					(BL-3)			
CO 5	Apply the te	echniques c	f multiple	integrals fo	r the area	and volum	e of the region	bounded			
	by curves.							(BL-3)			

	CO-PO Mapping													
						PO)						PSO	
CO	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
		2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3												
CO2	3	3												
CO3	3	3												
CO4	3	3												
CO5	3	3												
	•	•			1-	Low, 2-	Medium,	3-High						

	COURSE CONTENT									
MODULE – 1	MODULE – 1 Matrices Hours: 16h(12									
Rank of a matrix by echelon form, normal form. Solving system of homogeneous and non- homogeneous linear equations. Eigen values and Eigenvectors and their properties (without proof), Cayley-Hamilton theorem (without proof), finding inverse and powers of a matrix by Cayley-Hamilton theorem, Diagonalization.										
At the end of the Mo	odule 1, student will be able to:									
1. Solving	system of linear equations.	(BL-3)								
2. Determ	ine the rank, eigen values and eigenvectors.	(BL-3)								
3. Find the	e inverse and powers of a square matrix by Cayley-Hamilton The	eorem. (BL-1)								
MODULE -2	Hours: 14h(11L+3T)									

Definitions, homogenous and non-homogenous, Complimentary function, general solution, particular integral, method of variation of parameters. applications to L-C-R Circuits At the end of the Module 2, students will be able to: 1. Identify the essential characteristics of linear differential equations with constant coefficients. (BL-3) 2. Solve the linear differential equations with constant coefficients by appropriate method. (BL-3) 3. Classify and interpret the solutions of linear differential equations. (BL-2) 4. Solve the higher order differential equation by analyzing physical situations. (BL-3) **MODULE-3** Mean Value Theorems and Multivariable Calculus Hours: 12h (9L+3T) Taylor's and Maclaurin's theorems with remainders (without proof), related problems, Partial differentiation, Chain rule, Total derivative, Jacobians, maxima and minima of functions of two variables, method of Lagrange's multipliers. At the end of the Module 3, students will be able to: 1. Translate the given function as series of Taylor's and Maclaurin's with remainders. (BL-2) 2. Find the maximum and minimum values of the function for two variables. (BL-1) 3. Apply Jacobian concept to deal with problems in change of variables. (BL-3) **MODULE-4 Partial Differential Equations** Hours: 10h (7L+3T) Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, Solutions of first order linear partial differential equations using Lagrange's method, Solutions of first order non-linear partial differential equations- Standard forms-I, II, III and IV, Method of separation of variables. At the end of the Module 4, students will be able to: 1. Identify the basic properties of partial differential equations. (BL-3) 2. Outline partial differential equations. (BL-2) 3. Solve the applications of PDE by using the method of separation of variables. (BL-3) 4. Apply the PDE techniques in various engineering fields. (BL-3) MODULE-5 Hours: 12h(9L+3T) **Multiple Integrals** Double integrals, change of order of integration, change of variables. Evaluation of Triple integrals, change of variables between Cartesian, Cylindrical and Spherical polar coordinates. Finding areas and volumes using double and triple integrals. At the end of the Module 5, students will be able to: 1. Find the area bounded by a region using double integration. (BL-1) 2. Solve triple integrals. (BL-3) 3. Make Use of multiple integral techniques in engineering problems. (BL-3) **Total hours** 64h (48L+16T)

Content beyond syllabus:

- 1. L-U decomposition.
- 2. Deflection of Beams.
- 3. Taylor's series for function of two variables.
- 4. Homogeneous Linear Partial differential equations with constant coefficients.
- 5. Calculation of mass, Centre of gravity, moment of inertia.

Self-Stu Contents	dy: s to promote self-Learning:		
SNO	Торіс	CO	Reference
1	Matrices	CO1	https://youtu.be/P2pL5VThrzQ
2	Higher Order Ordinary Differential equations with constant coefficients	CO2	https://youtu.be/P7gVp333B6M https://youtu.be/btOCUmJkrrg
3	Mean value theorems & Multivariable Calculus	CO3	https://youtu.be/bJPuy0QZ-tE https://youtu.be/0apMXhWG_W8
4	Partial Differential Equations	CO4	https://youtu.be/kZ7Oa7iMiCs
5	Multiple Integrals	CO5	https://youtu.be/mIeeVrv447s

Text Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. B.S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2017.

Reference Book(s):

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 5/e, 2019 Narosa Publishing house
- 2. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education, 2017
- 3. H. K. Das, Er. RajnishVerma, Higher Engineering Mathematics, S. Chand, 2014
- 4. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press,9th edition 2020.

Online Resources/ Web References:

- 1. http://www.macs.hw.ac.uk/~simonm/linalg.pdf
- 2. http://www.e-booksdirectory.com/details.php?ebook=7400re
- 3. http://www.efunda.com/math/math_home/math cfm
- 4. http://www.ocw.mit.edu/resources/#Mathematics
- 5. http://www.sosmath.com/
- 6. http://www.mathworld.wolfram.com/

I-B.TechAPPLIED PHYSICS (21PH1001)R20SemesterHours / WeekTotalCreditMax MarksLTPhrsCCIESEE	NARAYANA ENGINEERING COLLEGE (AUTONOMOUS) :: NELLORE									
Semester Hours / Week Total Credit Max Marks L T P hrs C CIF SFF)21									
L T P hrs C CIE SEE '	larks									
	TOTAL									
I 3 0 0 48 3 40 60	100									
Pre-requisite: Mathematics Knowledge, Basics concepts of Physics										
 Course Objectives: 1. To understand optical phenomenon i.e. interference and diffraction related to their engineering applications. 2. To explain the concepts and difference between classical free electron theory and quantum theory. 3. To impart knowledge in basic concepts of free electron theory of metals and semiconductors. 4. To illustrate the concepts of superconductor and nanomaterials in functioning of electronic devices. 5. To familiarize the types of laser/optical fibres and their applications in communication engineering devices 										
Course Outcomes : After successful completion of the course, the student will be able	to: BTL									
CO 1 Explain the concepts of interference, diffraction using Huygen's wave theor	ory 2									
CO 2 Comprehend the concepts of matter waves, wave functions and their interpretat for understanding the matter at atomic scale	ation 1									
CO 3 Summarize the importance of free electron theories in determining the propertimetals and semiconductors	ies of 1									
CO 4 Understand the concepts of superconductor and nanomaterials to familarize t applications in relevant fields	their 2									
CO 5 Realize the importance of the lasers and optical fibres in engineering and medical 2 applications										
CO 5 Realize the importance of the lasers and optical fibres in engineering and med applications	edical 2									
CO 5 Realize the importance of the lasers and optical fibres in engineering and med applications CO-PO Mapping	edical 2									
CO 5 Realize the importance of the lasers and optical fibres in engineering and med applications CO-PO Mapping CO PO	PSO 2									
CO 5 Realize the importance of the lasers and optical fibres in engineering and med applications CO-PO Mapping CO-PO Mapping PO PO<	PSO PSO PSO PSO									
In the interview of the lasers and optical fibres in engineering and med applications CO-PO Mapping CO-PO Mapping O PO PO <th colspa<="" td=""><td>PSO PSO 1 2</td></th>	<td>PSO PSO 1 2</td>	PSO PSO 1 2								
In the last of the last of the last of the last optical fibres in engineering and med applicationsCO-PO MappingCO-PO MappingCO-PO PO P	PSO PSO 1 2									
In the importance of the lasers and optical fibres in engineering and med applicationsCO-PO MappingCO-PO MappingCOPO <po<po<po<po<po<po<po<po<po<po<po<po<p< td=""><td>PSO PSO 1 2</td></po<po<po<po<po<po<po<po<po<po<po<po<p<>	PSO PSO 1 2									
In the interview of the lasers and optical fibres in engineering and med applications CO-PO Mapping CO-PO Mapping CO-PO Mapping CO PO	PSO PSO 1 2 1 1									
In the importance of the lasers and optical fibres in engineering and med applications CO-PO Mapping CO-PO Mapping CO PO PO <t< td=""><td>PSO PSO PSO PSO 1 2 1 1 1 1</td></t<>	PSO PSO PSO PSO 1 2 1 1 1 1									

COURSE CONTENT

MODULE – 1

WAVE OPTICS

10 HOURS

Interference-Principle of Superposition, Interference of light, Conditions for sustained Interference, derivation of conditions for constructive and destructive interference of reflected light from a thin film, Newton's Rings-experimental arrangement, Determination of Wavelength; engineering applications of Interference

Diffraction-distinction between interference and diffraction, differences between Fresnel & Fraunhoffer diffractions, Fraunhoffer Diffraction at single slit(derivation, energy distribution curve), Fraunhoffer Diffraction at a Double slit (derivation, energy distribution curve), Theory of Diffraction Grating, Engineering applications of diffraction

At the end of the Module 1, students will be able to:

- 1. **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- 2. **Identify** engineering applications of interference including homodyne and heterodyne detection (L3)
- 3. Analyze the differences between interference and diffraction with applications (L4)

MODULE -2 INTRODUCTION TO QUANTUM MECHANICS

9 HOURS

Matter waves –de-Broglie hypothesis- properties, G.P.Thomson experiment, Phase and group velocities—Expression for group velocity; Heisenberg's uncertainty principle; Schrodinger's time dependent and independent wave equations – Physical significance of wave function-important characteristics of wave function, Eigen values and Eigen functions of a particle confined to one dimensional infinite square well (potential well).

At the end of the Module 2, students will be able to:

- 1. Explain Quantum Mechanics to understand wave particle dualism (L2)
- 2. Necessity of quantum mechanics to explore the behavior of sub atomic particles (L3)
- 3. **Evaluate** the Eigen values and Eigen functions of a particle (L2)

MODULE-3	FREE ELECTRON THEORY OF METALS &	
	SEMICONDUCTORS	10 HOURS

Classical free electron theory-assumptions, expression for electrical conductivity, merits and demerits; Quantum free electron theory of metals-expression for electrical conductivity; Fermi-Dirac distribution, Mathiesson rule, causes of electrical resistance in metals, Bloch's theorem (Qualitative), Kronig - Penny Model (Qualitative), Classification of solids into conductors, semiconductors and insulators based on energy band gap.

Semiconductors- Introduction – Intrinsic and Extrinsic semiconductors– Density of charge carriers, Electrical conductivity, Fermi level of intrinsic semiconductors ; Hall effect – Hall coefficient – Applications of Hall effect.

At the end of the Module 3, students will be able to:

- 1. **Demonstrate** the success of quantum free electron theory over classical free electron theory (L2)
- 2. **Examine** the probability of occupancy of an electron in an energy state at different temperatures (L3)
- 3. **Outline** the properties of n-type and p-type semiconductors and charge carriers (L2)
- 4. Identify the type of semiconductor using Hall effect (L2)

MODULE-4 SUPERCONDUCTORS AND NANOMATERIALS	10 HOURS
--	----------

Superconductors- Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory – Josephson effects (AC and DC) – Applications of superconductors.

Nanomaterials– Significance of nanoscale, Properties of nanomaterials: Physical, mechanical, Magnetic, Optical; Synthesis of nanomaterials: Top-down-Ball Milling, Bottom-up –Chemical vapour deposition; Applications of Nano materials.

At the end of the Module 4, students will be able to:

- 1. **Explain** how electrical resistivity of solids changes with temperature (L2)
- 2. Classify superconductors based on Meissner's effect (L2)
- 3. Explain Meissner's effect, BCS theory & Josephson effect in superconductors (L2)
- 4. Identify the nano size dependent properties of nanomaterials (L2)
- 5. **Illustrate** the methods for the synthesis (L2)
- 6. Apply the basic properties of nanomaterials in various Engineering branches (L3).

MOD	DULE-5LASERS & OPTICAL FIBERS9 HOURS										
Lasers: Introduction, properties of lasers: monochromaticity, coherence, directionality, brightness; Spontaneous & stimulated emission of radiation, Einstein coefficients, Population inversion, Pumping methods, Types of lasers: Nd- YAG Laser, He–Ne Laser, Semiconductor laser; Applications.											
Introductio Numerical profile-App	n to Optica Aperture-C plications: f	l Fibers-Total Inter Classification of op iber optic commun	rnal Refl ptical fil ication s	lection-Critical angle of propagation-A bers based on materials, modes and ystem and sensors.	cceptance angle- refractive index						
At the end	of the Modu	ule 5, students will	be able t	to:							
1. Un 2. Ap 3. Idd 4. Ex 5. Cla	 Understand the basic concepts of LASER light Sources (L2) Apply the concepts to learn the types of lasers (L3) Identify the Engineering applications of lasers (L2) Explain the working principle of optical fibers (L2) Classify optical fibers based on refractive index profile and mode of propagation (L2) 										
				Total hou	rs: 48 hours						
Ty Ch Self-Study Contents	pes of magr aracterization to promote	netic materials and on of nano material e self-Learning:	the appli s: (a) X-	cations. ray diffraction & Scanning electron mic	croscope						
S.No		Торіс	CO	Reference							
1	Wave opt	tics	CO1	https://nptel.ac.in/courses/122/107/12	2107035/						
2	Introduct mechanic	ion to quantum s	CO2	https://nptel.ac.in/courses/115/101/1	15101107/						
3	Free elect metal &	tron theory of Semiconductors	CO3	https://nptel.ac.in/courses/113/106/11 https://nptel.ac.in/courses/115/102/11	<u>3106040/</u> 5102025/						
4	Supercon nanomate	ductors and rials	CO4	https://nptel.ac.in/courses/115/101/11 https://nptel.ac.in/courses/118/104/1	<u>5101012/</u> _ <u>18104008/</u>						
5	Lasers & optical fibersCO5 https://nptel.ac.in/courses/115/102/115102124/										
 Fext Book(s): 1. M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" AText book of Engineering Physics"- S. Chand Publications, 11th Edition 2019. 											

- 2. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2012.
- 3. S.O.Pillai, "Solid State Physics", 8th edition, New Age International Publishers, 2018.

Reference Book(s):

- 1. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson Education, 2018
- 2. N. Subrahmanyam, BrijLal, A Textbook of Optics, S. Chand, New Delhi, 2015
- 3. Kittel, C. Introduction to Solid State Physics. Wiley, 2005.
- 4. K. Thyagarajan, Engineering Physics, McGraw-Hill Education (India) Pvt. Ltd, 2016.
- 5. Ajoy Ghatak, Optics, 5th Edition, McGraw Hill, 2012
- 6. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.
- 7. William T. Silfvast, "Laser Fundamentals" 2nd edition, Cambridge University Press, 2004.
- 8. T. Pradeep, "A Text Book of Nanoscience and Nanotechnology", Tata Mc Graw Hill, 2003

Online Resources:

https://www.youtube.com/watch?v=-mNQW5OShMA https://www.youtube.com/watch?v=TwlRVDM6bKY https://www.youtube.com/watch?v=lH9SNnQCs54&t=58s

Ī	https://www.youtube.com/watch?v=Usu9xZfabPM&t=154s
	https://www.youtube.com/watch?v=x4Nr93ALNjo
	https://www.youtube.com/watch?v=FL4QCymhYDA
	https://www.youtube.com/watch?v=PvN-cwQXBDc
	https://www.youtube.com/watch?v=RAqgxH_pS7Y
	https://www.youtube.com/watch?v=AhLATP5rYPs
	https://www.youtube.com/watch?v=CjAVfW_6juw
	https://www.youtube.com/watch?v=h6FYs_AUCsQ
	https://www.youtube.com/watch?v=3-PQ8H-AI9c
	https://www.youtube.com/watch?v=3-PQ8H-AI9c
	https://www.youtube.com/watch?v=PNElByWIGNc
	https://www.youtube.com/watch?v=1xWBPZnEJk8
	https://www.youtube.com/watch?v=WgzynezPiyc
	https://www.youtube.com/watch?v=T94BbyYyNpg
-	https://www.youtube.com/watch?v=aqazAcE19vw
ľ	Web Resources:
	1. <u>http://www.sfu.ca/phys/141/1134/Lectures/SP%20Lecture%2029%20-</u>
	%20Interference&Diffraction.pdf
	2.http://pages.physics.cornell.edu/~ajd268/Notes/QM-Notes.pdf
	3. <u>http://www-rjn.physics.ox.ac.uk/lectures/metalsnotes10.pdf</u>
	4. <u>https://www.iare.ac.in/sites/default/files/lecture_notes/semiconductors%20lecture%20notes%20</u>
	<u>%281%29_0.pdf</u>
	5. <u>http://www.gpcet.ac.in/wp-content/uploads/2018/09/UNIT-5-EP-PDF.pdf</u>
	6.https://galgotiacollege.edu/assets/pdfs/study-material/notes-Physics.pdf

		NA	RAYA	NA E	ENGIN	IEER	ING	COLI	LEG	E:NEL	LOR	E		
I-B.Tech	BASIC ELF						CTRICAL CIRCUITS (21ES1003) R2021					1		
Semester	Hours / Week			Т	otal	Cred	it		Max Marks					
	Ι		Т		Р	h	nrs	C		CIE		SEE	TO	TAL
Ι	3	3	0		0	4	48	3		40		60	1	00
Pre-requisite: Fundamental of mathematics and physics														
Course Objectives:														
1.	1. To study the basics of circuit analysis.													
2.	To st	tudy tl	he mag	gnetic	circui	ts.								
3.	The o	conce	pts of	real p	ower,	reacti	ve po	wer, c	ompl	ex pow	er, ph	ase an	gle and	b
	phase	e diffe	erence	•										
4.	To u	nderst	tand fr	requen	cy resp	ponse	in ele	ectrica	l circ	uits.				
5.	To u	nderst	tand th	ne con	cept o	f grap	hical	solutic	on to	electric	al net	work.		
6.	To in	npart	know	ledge	on solv	ving c	ircuit	equati	ions	using n	etworl	k theor	rems.	
Course Ou	itcon	nes: A	After s	ucces	sful c	ompl	etion	of the	cour	rse, the	stude	nt wil	l be ab	le to:
CO 1	Solv	e vari	ous el	ectric	al netv	vorks	in pre	esence	of a	ctive ar	id pas	sive el	lements	s.(BL-
	3)													
CO 2	Unde	erstan	d the	funda	mental	beha	aviou	of A	AC c	rcuits	and s	solve	AC cir	cuit
	prob	lems.	(BL-2))										
CO 3	Expl	ain th	e beha	aviour	of the	circu	it at s	series	& pa	rallel re	sonar	nce of o	circuit	& the
	effec	et of re	esonar	nce .(E	BL-2)									
CO 4	Appl	ly graj	ph the	ory to	formu	late n	etwor	k equa	ation	s.(BL-3)			
CO 5	Solv	e elec	trical	netwo	rks by	using	, princ	iples o	of ne	twork tl	neorer	n.(BL·	-3)	
					C	D-PC) Map	ping						
CO						P	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
CO1	1	$\frac{2}{2}$	3	4	5	6	7	8	9	10	11	12	1	2
	3 2	2	1							-		3	<u>ゝ</u>	1
	3 2	2	2										2	2
	3 2	2	2 2										2 2	3
	3 2	2	2 2										2	3
	3	3	2		l·Lou	, 2 N	[odium		ligh					

COURSE CONTENT						
MODULE – 1	INTRODUCTION TO ELECTRICAL &	11hours				
	MAGNETIC CIRCUITS					

Network elements, R, L and C Parameters, Kirchhoff's Laws - Independent and Dependent sources-Source Transformation, Network Reduction Techniques, Faraday's Laws of Electromagnetic Induction, Concept of Self and Mutual Inductance, Dot Convention, Coefficient of Coupling, Composite Magnetic Circuit, MMF Calculations.

At the end of Module 1, students will be able to:

1. Explain the network elements.(BL-2)

2. Understand the Voltage, Current, Power, Direct Current (DC), Alternating Current.(BL-2)

3. Explain the laws of electromagnetic induction.(BL-2)

4. Explain the Single phase AC circuits.(BL-2)

MODULE -2 SINGLE PHASE AC CIRCUITS

10hours

Introduction, R.M.S, Average Values and Form Factor for Different Periodic Wave Forms. Phase and Phase Difference, Steady State Analysis of R, L, C With series and parallel Sinusoidal Excitation. At the end of the Module 3, students will be able to:

- 1. Understand the advantages of single phase AC system. (BL-2)
- 2. Explain the complex and polar forms representation.(BL-2)
- 3. Find the AC circuits in order to determine the voltage, current and power for the given problem. (BL-2)

MODULE -3RESONANCE & LOCUS DIAGRAMS10hoursResonance: Introduction, Series Resonance and parallel resonance, resonance frequency, Q-
factor, Bandwidth, Locus diagrams of RL, RC and RLC circuits and problems.10hours

At the end of the Module 4, students will be able to:

1. Explain AC circuits along with resonance and locus diagrams.(BL-2)

2. Understand the effect of resonance on series and parallel resonance circuits.(BL-2)

3. Explain the frequency response for a resonant circuits.(BL-2)

MODULE -4					N	ETW	OI	RK	TO	PC	DLO	GY		9h	ours	;		
		~		_	-		_	-		_		~		· _ ·				

Definitions – Graph – Tree, Incidence Matrix, Basic Cutset and Tieset matrices for planar networks - Nodal Analysis, Mesh Analysis, Super Node and Super Mesh Analysis for Dependent and Independent Voltage and Current Sources and DC & AC Excitations - Duality and Dual Networks.

At the end of the Module 5, students will be able to:

- 1. Understand the overview of topology for a given network. (BL-2)
- 2. Find the graph for the given electrical network. (BL-2)
- 3. Apply graph theory to solve network equations. (BL-3)

MODULE-5	NETWORK THEOREMS	08hours						
uperposition theorem, Compensation theorem, Thevenin's theorem, Norton's theorem,								
Maximum power transfer	theorem, Tellegen's theorem, Millman's the	eorem, Reciprocity						
theorem; Application of ne	eorem; Application of network theorems in solving DC and AC circuits.							
t the end of the Module 6, students will be able to:								
1. Understand the wa	v of approaching to solve for a given netwo	rk. (BL-2)						

- 1. Understand the way of approaching to solve for a given network. (BL-2
- 2. Solve theorems for finding the solutions of network problem.(BL-3)
- 3. Explain the application of network theorems.(BL-2)

Total hours: 48hours

Content beyond syllabus:

- 1. Three Phase circuits and its Importance in Electrical Engineering.
- 2. Real time applications of network theorems.

Self-Study:

Contents to promote self-Learning:

	1 0	
SNO	Торіс	Reference
1	Introduction to the electrical & magnetic circuits	https://nptel.ac.in/courses/117/106/117106108/
2	Single phase AC circuit	https://nptel.ac.in/courses/108/105/108105053/
3	Locus diagram and resonance	https://nptel.ac.in/courses/108/105/108105112/
4	Analysis of electrical circuit and Graph theory	https://nptel.ac.in/courses/108/105/108105159/
5	Network theorem	https://nptel.ac.in/courses/117/106/117106108/

Text Book(s):

1. A Sudhakar and Shyam Mohan S P, "Circuits and Networks: Analysis and Synthesis", TMH, 5th Edition, New Delhi, 2015.

2. Ravish R., Network Analysis and Synthesis, 2/e, McGraw-Hill, 2015

Reference Book(s):

1. S.Sivanagaraju, G.Kishore & C.Srinivasa Rao, "Electrical Circuit Analysis", Cengage Learning, 1st Edition, 2010.

2. A. Chakrabarti : Circuit Theory (Analysis and Synthesis), Dhanpat Rai & Co

3. Joseph A. Edminister and Mahmood Nahvi, "Electric Circuits Schaum's Outline Series", 6th Edition, Tata McGraw-Hill, 2014, New Delhi.

4. Electric Circuits by N.Sreenivasulu, REEM Publications

Online Resources / Web Reference:

1. https://nptel.ac.in/courses/108/105/108105159/

2. https://nptel.ac.in/courses/108/102/108102042/

3. <u>https://nptel.ac.in/content/storage2/courses/108105053/pdf/L-</u>

21(TB)(ET)%20((EE)NPTEL).pdf

4. https://en.wikibooks.org/wiki/Circuit_Theory

5.<u>http://www.mathtutordvd.com/products/Engineering-Circuit-Analysis-Volume-1.cfm</u>

6.<u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-andelectronics-spring-2007/video-lectures/lecture-2/</u>

7. <u>http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Circuit/Circuit1.html</u>

8. <u>https://opencourses.emu.edu.tr/course/view.php?id=3</u>

NARAYANA ENGINEERING COLLEGE::NELLORE										
	P	ROBLE	M SOLVI	ING AND	PROGR	AMMINO	r t	R2021		
Semester	H	ours / We	ek	Total	Credit	Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
I 3 0 0 48 3 30 70							100			
Pre-requisi	Pre-requisite: Mathematics Knowledge, Analytical and Logical skills									
Course Ob	ojectives:									
1. To ur	nderstand v	arious ste	eps in Prog	gram deve	lopment.					
2. To ur	nderstand t	he basic c	oncepts ir	n C Progra	mming La	inguage.				
3. To lea	arn how to	write mo	dular and	readable (C Program	s.				
4. To lea	arn the syr	ntax and so	emantics of	of a C Prog	gramming	language.				
5. To lea	arn structu	red progra	amming a	pproach fo	or problem	solving.				
Course Out	t comes : A	fter succe	essful con	npletion o	of the cour	se, Stude	nt will be	able to:		
CO 1	Identify 1	nethods to	o solve a p	oroblem th	rough con	nputer pro	gramming	. (BL - 3)		
CO 2	Understa	nd the use	of basic e	elements c	of C langua	age. (BL -	2)			
CO 3	Understand the usage of various control statements and the modular approach									
	for solvir	ig the pro	blems. (Bl	L - 2)						
CO 4	Apply the	e Arrays a	nd Pointe	rs for solv	ing proble	ms. (BL -	3)			
CO 5	Explain U	Jser-Defin	ned Data 7	Types and	Files. (BL	2)				

CO-PO Mapping															
		РО												PSO	
СО	PO 1	PO 2	PO3	PO4	PO5	PO6	PO 7	PO 8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	
CO1	3	3											1		
CO2	1	2	1										1		
CO3	1	2	3	2	2							2	2	2	
CO4	3	3	2	2								1	2		
CO5	2	2	2	2								1	2		
			•		1: Lo	w, 2-N	Aediu	m, 3-	High						

COURSE CONTENT												
MODULE – 1	Fun	Fundamentals of Computers and Programming9 H										
Introduction to Programming, Algorithms and Flowcharts: Programs and Programming,												
Programming la	nguages,	Compiler,	Interpreter,	Structured	Programming	Concept,						
Algorithms, Flowcharts, How to Develop a Program.												
Fundamental Algorithms: Exchanging the values of Two Variables, Counting, Summation												
of a set of num	nbers, Fac	ctorial comp	putation, Gen	neration of	the Fibonacci	Sequence,						
Reversing the digi	its of an in	nteger.										

At the end of the Module 1, students will be able to:

- 1. Solve problems using language independent notations. (BL 3)
- 2. Understand the compilers and interpreters. (BL 2)
- 3. Understand Structured Programming. (BL 2)
- 4. Develop algorithms and flowcharts for problems. (BL 3)

MODULE -2	Basic Elements of C

Basics of C: Introduction, Character Set, Structure of a C Program, A Simple C Program, Variables, Data Types and Sizes, Declaration, How does The Computer Store Data in Memory, Identifiers, Keywords, Constants, Assignment, and Initialization.

9 H

10 H

Operators and Expressions: Arithmetic Operators, Relational Operators, Logical Operators, Bitwise Operators, Conditional Operator, Comma operator, sizeof operator, Expressions, L values and R values, Expression Evaluation- Precedence and Associativity, Type Conversion.

At the end of the Module 2, students will be able to:

- 1. Understand the basic structure of a program in C. (BL 2)
- 2. Understand tokens in C language. (BL 2)
- 3. Illustrate the working of expressions. (BL 2)
- 4. Understand the precedence and Associativity rules of operators. (BL 2)
- 5. Understand the rules of type conversion. (BL 2)

MODULE-3	Data Input / Output, Control Statements and	11 H
	Functions	

Input and Output: Basic Screen and Keyboard I/O in C, Formatted Input and Output, Unformatted Input and Output Functions

Control Statements: Selection Statements - if, Nested if, if-else, Nested if-else, else-if ladder, switch, Looping Statements - while, do-while, for, Nested loops, Unconditional Statements - goto, break, continue, return.

Functions: Introduction, Using Functions, Passing Arguments to a Function, Working with Function, Scope and Extent, Recursion, The C Preprocessor, Storage classes, Multifile programs.

At the end of the Module 3, students will be able to:

- 1. Explain the Formatted and Unformatted I/O functions. (BL 2)
- 2. Understand Selection Statements. (BL 2)
- 3. Understand Looping Statements. (BL 2)
- 4. Explain Unconditional Statements. (BL 2)
- 5. Understand the basic concept of functions. (BL 2)
- 6. Understand concept of Recursion and Preprocessor. (BL 2)
- 7. Explain storage specifiers. (BL 2)

MODULE-4	Arrays and Pointers	
many and Ctu	man Introduction One Dimensional Amore Multidimensio	

Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Arrays to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulation, String Manipulation, Arrays of Strings.

Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command line arguments, Dynamic Memory Management.

At the end of the Module 4, students will be able to:

- 1. Understand the concept of Arrays. (BL 2)
- 2. Understand the concept of pointers. (BL 2)
- 3. Explain Dynamic Memory Management. (BL -2)

MODULE-5 User-Defined Data Types and Files 9 H

Structures and Unions: Basics of Structures, Nesting of Structures, Arrays of Structures, Structures and Pointers, Structures and Functions, Self-Referential Structures, Unions, Bit-fields, Enumerations, typedef.

Files: Introduction, Using Files in C, Working with Text Files, Random Accesses to Files of Records.

Total hours:

48 HOURS

At the end of the Module 5, students will be able to:

- 1. Explain user defined data types. (BL 2)
- 2. Understand the concept of Self-Referential Structures. (BL 2)
- 3. Understand the working of files. (BL 2)

Content Beyond Syllabus:

- 1. Analysis of Algorithms
- 2. Binary Files
- 3. Variable Length Argument Lists

Self-Study:

Contents to promote self-Learning:

SNo	Module	Reference
1	Fundamentals of Computers and Programming	https://nptel.ac.in/courses/106/106/106106127/ [Lec 1] https://nptel.ac.in/courses/106/105/106105171/ [Week 1 - Lec 1 To 4]
2	Basic Elements of C	https://nptel.ac.in/courses/106/105/106105171/ [Week 1 - Lec 10] https://nptel.ac.in/courses/106/105/106105171/ [Week 2 - Lecture 7 To 10] https://nptel.ac.in/courses/106/105/106105171/ [Week 3 - Lec 11 To 14] https://nptel.ac.in/courses/106/106/106106127/ [Lec 12] https://nptel.ac.in/courses/106/106/106106127/ [Lec 13] https://nptel.ac.in/courses/106/106/106106127/ [Lec 14]

3	Data Input / Output, Control Statements and Functions	https://nptel.ac.in/courses/106/106/106106127/ [Lec 20] https://nptel.ac.in/courses/106/105/106105171/ [Week 4 - Lec 25] https://nptel.ac.in/courses/106/105/106105171/ Week 4 - Lec 26 To 28] [Week 5 - Lec 21 To 25] https://nptel.ac.in/courses/106/106/106106127/ [Lec 26 & 27]					
4	Arrays and Pointers	https://nptel.ac.in/courses/106/105/106105171/ [Week 5 - Lec 30 To 32] [Week 6 - Lec 32 To 34] [Week 6 - Lec 35,36] https://nptel.ac.in/courses/106/106/106106127/ [Lec 37,38]					
5	User-Defined Data Types and Files	https://nptel.ac.in/courses/106/105/106105171/ [Week 11 - Lec 40,41] https://nptel.ac.in/courses/106/106/106106127/ [Lec 43,44] https://nptel.ac.in/courses/106/106/106106127/ [Lec 47]					
Text I	Book(s):						
1.	Pradip Dey, and Manas Gho	osh, "Programming in C", 2018, Oxford University Press.					
2.	Byron Gottfried, Schaum's	Outline of Programming with C, 4 th Edition, 2018,					
	McGraw-Hill						
Refer	ence Books :						
1.	Brian W. Kernighan, and	Dennis M. Ritchie, "The C Programming Language",					
	2 nd Edition, Pearson.						
2.	Ajay Mittal, Programming	; in C: A Practical Approach , 3/e, Pearson Publication					
3.	2020	I, C: The Complete Reference,4th Edition, McGraw Hill,					
4.	SOMASHEKARA, M. T., GURU, D. S., MANJUNATHA, K. S., Problem Solving with C.2 nd Edition, PHI Learning, 2018						
5.	Paul Deitel, Deitel& Harvey Deitel, C How to Program,6th Edition, Pearson						
	Education						
6.	Jeri R. Hanly, Elliot B. K	Coffman, Ashok Kamthane and A.Ananda Rao,					
_	Programming in C and D	ata Structures, 1st Edition, Pearson Education, 2010.					
7.	H.Cheng, C for Engineer Education / PHI, 2009	's and Scientists, Mc.Graw-Hill International Edition					
8.	Yashavant P. Kanetkar, I	Let us C, 16th Edition, BBP Publications, Delhi, 2017.					
9.	R.G. Dromey, "How to S	olve it by Computer". Pearson,2014.					
10.	. Anita Goel, Computer Fu	Indamentals, Pearson Publication,2010.					

NARAYANA ENGINEERING COLLEGE:NELLORE														
I-B.Tech				Ар	plied	Physic	s lab (21PH1	501)				R202	1
Semester		He	ours / V	Week	-	T	otal	Credi	t		Μ	lax Ma	ırks	
	L		Т		Р	h	nrs	C		CIE		SEE	TO	TAL
Ι	0)	0		2		36	1.5	5	40		60	1	00
Pre-requisi	te: N	il												
Course Obj	jective	es:												
1. To provide student to learn about some important experimental techniques in physics														
	with	know	ledge i	n theo	retical	aspect	ts so t	hat the	y can	excel	in that	t partic	cular fiel	ld. To
	prepa	are st	udents	for	perform	ming	requir	ement	analy	sis ar	nd des	sign c	of varie	ty of
	appli	cation	s.											
2.	To e	nable	the stu	ıdents	to uno	derstan	d the	conce	pts of	interf	erence	and d	iffractio	n and
	their	applic	ations.											
3.	To ec	ducate	studer	its to	recogr	nize the	e appli	cations	s of las	ser in f	inding	the wa	velengt	h, slit
	width	1 and i	ts role	in diff	raction	i studie	es 					1 011		
4.	Tom	ake th	e stude	ents to	unders	stand t	he im	portant	paran	neters of	of option	cal fibr	es and n	netals
Course Out	tcome	s: Afte	er suco	cessful	comp	oletion	of th	e cour	se, the	e stude	ent wil	ll be at	ole to:	
CO 1	learn	ımpo	ortant c	concep	ts of p	hysics	throug	gh invo	olveme	ent in t	he exp	erimer	nts by ap	oplying
	theor	etical	knowl	edge.										
CO 2	unde	rstand	the c	oncept	s of in	terfere	nce an	d diffra	action	and th	eir app	licatio	ns.	
CO 3	recog	gnize t	the app	olicatio	ns of l	aser ir	n findi	ng the	wave	length	, slit v	width	and its 1	ole in
	diffra	action	studies	8										
	1	. 1	.1 .				6	. 1 (*1		1 .	1			
CO 4	unde	rstand	the 1r	nporta	nt para	meters	of op	tical fil	ores ar	nd meta	als			
						<u>CO-PO</u>	Map	ping						
СО						P	0						PS	50
	PO 1	204	PO	PO	PO	PO		PO	PO	PO	PO	PO	PSO	PSO
<u> </u>	1 2	2 1	3	4	5	6	/	ð	9	10	11	12	1	2
	2	1												
<u> </u>	2	1				1								
CO4	2	1				1								
	_		1	1	1: Lov	w, 2-M	ledium	n, 3- Hi	gh	1	1	1	1	1
L						,		-						
					CO	URSE	CONT	ENT						

COURSE CONTENT	СО									
Task -1Determination of Hall voltage and Hall coefficient of a given semiconductorusing Hall effect.										
The objective :To determine a) sign of the charge carriers, b) charge carrier concentration, c) mobility of the charge carriers of a given semiconductor	CO 1									
Task - 2 To determine the resistivity of semiconductor by Four probe method										
Objective: To determine the resistivity of semiconductor by Four probe method	CO 1									
Task -3Determine the energy gap of a given semiconductor diode.										
Objective:To plot characteristics between reverse saturation current and 103 /T and find out the approximate value of Energy Band Gap in PN junction diode	CO 1									
TASK -4 Measurement of radius of curvature of a lens by Newton's rings method.										
Objective:To determine the wavelength of sodium light by Newton's Ring method	CO 2									
--	------	--	--	--	--	--	--	--	--	--
The key idea behind Newtons ring experiment is the thin film formation between a plane-										
convex lens and a glass plate. Due to this thin film of air a path difference occurs in the waves										
which reflect from the lower surface of the lens and the top surface of the glass plate. As a result of it, they superimpose and develop the interference pattern.										
result of it, they superimpose and develop the interference pattern.										
TASK -5. Determine the thickness of the wire using wedge shape method										
Objective: To calculate the thickness of a thin wire by forming interference fringes using an air	CO 2									
wedge arrangement.										
The key idea behind this experiment is the formation of thin wedge shaped film between two plane										
glass plates. Due to this thin film of air, a path difference occurs between waves reflected from top										
and bottom surface of the film. On superimposition of these waves an interference pattern										
containing a number of straight line fringes will be produced										
TASK-6 Determination of wavelength by plane diffraction grating normal incidence method										
Objectives: 1.To understand the types of diffraction	CO 2									
2. To familiarize with the principle of diffraction in plane transmission grating										
3. To know the procedure for standardization of the grating										
4.To determine the wavelengths of prominent spectral lines of mercury spectrum.										
An arrangement, which is equivalents in its action to a large number of parallel slits of same width										
separated by equal opaque spaces is called diffraction grating. It is constructed by ruling fine										
equidistant parallel lines on an optically plane glass plate with the help of a sharp diamond point.										
TASK -7 Dispersive power of a diffraction grating										
objective: To determine Dispersive power of a diffraction grating	CO 2									
When white light passes through a grating, different wavelengths undergo different angles of										
diffraction. Hence white light split up into different colours and diffraction spectra of different										
orders will be produced. The angular dispersion or dispersive power of a grating is defined as the										
rate of change of angle of diffraction with the change of wavelength in a particular order of the										
spectrum.										
TASK -8 Determination of wavelength of LASER light using diffraction grating										
Objectives :1. To determine the concept of diffraction	CO 3									
2. To determine the wavelength of the given Laser source.										
TASK -9 . Laser: Diffraction at a single slit										
Objective:Determination of width of a given single slit using laser diffraction method	CO 3									
Laser beam has high monochromaticity, coherence and directionality. Hence it forms a clear										
diffraction pattern and we can measure width of a single slit accurately.										
TASK -10 To determine the numerical aperture and acceptance angle of a given optical fibre										
Objective: To determine the numerical aperture and acceptance angle of a given optical fiber.	CO4									
In optical fibres light travel by multiple total internal reflections. Numerical aperture represents										
light gathering powerof optical fibre. Acceptance angle represents maximum limiting angle at one										
end of optical fibre for the light ray to travel by multiple total internal reflections through the core										
region of thefibre.										
1. Optical fibers may be used for accurate sensing of physical parameters and fields like pressure,										
temperature and liquid level.										
2. For military applications like fiber optic hydrophones for submarine and underwater sea										
application and gyroscopes for applications in ships, missiles and aircrafts.										

Additional Experiments:	
TASK -11 Laser: Diffraction at a double slit	
Objective:Determination of width of a given double slit using laser diffraction method. With this experiment we can demonstrate diffraction nature of lasers and measure width of a double slit accurately.	CO 3
TASK -12: Determination of Fermi energy of a metal.	
Objective: To determine Fermi energy of a metal. Fermi energy represents highest energy level occupied by the electron at 0 K in a metal.	CO4
Virtual lab: 1) Laser beam divergence and spot size https://vlab.amrita.edu/?sub=1&brch=189∼=342&cnt=1	
Michelson's Interferometer- Wavelength of laser beam https://vlab.amrita.edu/?sub=1&brch=189∼=1106&cnt=1	
Anderson's Bridge https://vlab.amrita.edu/?sub=1&brch=192∼=859&cnt=1	
Self-Study:	
Contents to promote self-learning:	

SNO	Торіс	Reference
1	Newton rings	https://youtu.be/PU-SeNfIRcs
2	Diffraction grating experiment – Wavelength of mercury spectrum	https://youtu.be/N0lxwqANsd4
3	Experiment – Laser Grating-Determination of Wavelength of Given Laser Source	https://youtu.be/764Fr0mnOrQ

Text Book(s):

1. C. L. Arora, "Practical Physics", S. Chand & Co., New Delhi, 3rd Edition, 2012.

2. Vijay Kumar, Dr. T. Radhakrishna, "Practical Physics for Engineering Students", S M Enterprises, 2nd Edition, 2014.

Reference Book(s):

- S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.
- C.H. Bernard and C.D. Epp, John Wiley and Sons, "Laboratory Experiments in College Physics" Inc., New York, 1995.

Dr.Ruby Das, C.S.Robinson, Rajesh Kumar and Prasanth Kumar "A text book of Engineering Physics Practical", 1st edition, Sahu University Science Press, 2010.

4. Jayaraman, "Engineering Physics Laboratory Manual", 1st edition, Pearson Education, 2014.

Web Resources:

- 1. https://www.scribd.com/doc/143091652/ENGINEERING-PHYSICS-LAB.
- 2. https://www3.nd.edu/~wzech/LabManual_0907c.pdf.
- 3. https://www.morebooks.de/store/gb/book/engineering-physics-lab-manual/isbn/978-3-330-34402.

NARAYANA ENGINEERING COLLEGE:NELLORE									
BASIC ELECTRICAL CIRCUIT LAB (21ES1506) R2021									
H	ours / Wee	k	Total	Credit		Max Mar	ks		
L	Т	Р	hrs	С	CIE	SEE	TOTAL		
0	0	2	32	1	40	60	100		
: Networ	k Analysis								
tives:									
als of Ohr	n's law, Kir	chhoff's cu	rrent and v	oltage laws	s and its pra	actical imple	ementation.		
ent of volt	age, currer	nt, power a	nd impeda	nce of any o	circuit.				
a given cir	cuit depen	iding on typ	pes of elem	ents.					
omes: Aft	er success	ful comple	etion of the	e course, th	ne student	will be able	e to:		
Apply the	e KCL and	KVL for	circuit and	alysis and	verify the	e results tl	heoretically		
BL= 3)									
Experime	entally de	termine s	elf induct	ance, mut	ual induct	ance and	coefficient		
of coupling.(BL=3)									
······································									
Practically determine band width, Q-factor and verify with theoretical values.									
(BL=3)									
Able to draw locus diagrams, waveforms and phasor diagrams for lagging and									
leading networks.(BL-2)									
Apply su	itable the	orems for	• the giver	Electrica	l circuit a	nd verify v	with		
heoretic	al values.	(BL=3)	-						
	Ha L O i Networ tives: als of Ohr ent of volt a given cir mes: Aft pply the BL= 3) Cxperime f couplin Practical BL=3) ble to d eading n apply sui heoretic	NARAYAI BASIC Hours / Wee L T 0 0 Some / Wee Itives: als of Ohm's law, Kir ent of voltage, current of vo	NARAY ANA ENGIN BASIC ELECTRICA Hours / Week P L T P 0 0 2 INetwork Analysis tives: als of Ohm's law, Kirchhoff's current, power a a given circuit depending on type omes: After successful completermine on type opply the KCL and KVL for of BL= 3) Cxperimentally determine band of BL=3 oble to draw locus diagramates eading networks.(BL-2) opply suitable theorems for heoretical values.(BL=3)	NARAYANA ENGINEERING BASIC ELECTRICAL CIRCUIT Hours / Week Total L T P hrs 0 0 2 32 Network Analysis tives: als of Ohm's law, Kirchhoff's current and vent of voltage, current, power and impedate a given circuit depending on types of elem omes: After successful completion of the apply the KCL and KVL for circuit and BL= 3) Experimentally determine self inductant of coupling.(BL=3) Practically determine band width, Q-fBL=3) able to draw locus diagrams, wavefor eading networks.(BL-2) apply suitable theorems for the given theoretical values.(BL=3)	NARATAINA ENGINEERING COLLEG BASIC ELECTRICAL CIRCUIT LAB (21ES1 Hours / Week Total Credit L T P hrs C 0 0 2 32 1 INetwork Analysis tives: als of Ohm's law, Kirchhoff's current and voltage laws ent of voltage, current, power and impedance of any of a given circuit depending on types of elements. omes: After successful completion of the course, the pply the KCL and KVL for circuit analysis and BL= 3) Experimentally determine self inductance, muther of coupling.(BL=3) Practically determine band width, Q-factor and BL=3) able to draw locus diagrams, waveforms and preading networks.(BL-2) apply suitable theorems for the given Electrica heoretical values.(BL=3)	NARAYANA ENGINEERING COLLEGE:NELLO BASIC ELECTRICAL CIRCUIT LAB (21ES1506) Hours / Week Total Credit L T P hrs C CIE 0 0 2 32 1 40 End of Ohm's law, Kirchhoff's current and voltage laws and its prate als of Ohm's law, Kirchhoff's current and voltage laws and its prate ent of voltage, current, power and impedance of any circuit. a given circuit depending on types of elements. emes: After successful completion of the course, the student Apply the KCL and KVL for circuit analysis and verify the BL= 3) Experimentally determine self inductance, mutual induct f coupling.(BL=3) Practically determine band width, Q-factor and verify with BL=3) able to draw locus diagrams, waveforms and phasor diagrams, may for the given Electrical circuit a heoretical values.(BL-2) apply suitable theorems for the given Electrical circuit a	NARATAINA ENGINEERING COLLEGE:NELLORE BASIC ELECTRICAL CIRCUIT LAB (21ES1506) Hours / Week Total Credit Max Mar L T P hrs C CIE SEE 0 0 2 32 1 40 60 ENTROPY of College Set 0 0 2 32 1 40 60 ENTROPY of College Set 0 0 2 32 1 40 60 ENTROPY of College Set 0 0 2 32 1 40 60 ENTROPY of College Set 0 0 2 32 1 40 60 Entropy of College Set 10 <t< th=""></t<>		

CO-PO Mapping														
СО		PO PSO											60	
	PO	PO	РО	PO	PO	PO	РО	РО	PO	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	1	1		1	2		1		2	2	2
CO2	2	2	2	1	1		1	2		1		2	2	2
CO3	2	2	2	1	1		1	2		1		2	2	2
CO4	2	2	2	1	1		1	2		1		2	2	2
CO5	2	2	1				1						2	3
					1: Lov	w, 2-M	edium	, 3- Hi	gh					

COURSE CONTENT	СО
Task 1 – Verification of Kirchhoff's laws	
Objective:	CO 1
To verify the KCL and KVL for a given circuit	
TASK-2 Determination of Self, Mutual Inductances and Coefficient of Coupling	
Objective:	CO 1
To determine the self and mutual inductances and coefficient of coupling for two inductive coils.	
TASK-3 Measurement of current in various branches of RLC series and draw the phasor	CO 2
diagram.	
Objective: To Analyze the series and parallel RLC circuits	
TASK-4 Locus Diagrams of RL, RC Series Circuit.	
Objective:	CO 2
To Plot the current locus diagrams for Series RL,RC circuit.	
TASK-5 Frequency response of series & parallel resonance circuit with analysis and design	
Objective:	CO 3
To determine resonant frequency, band width and Q-factor for series & parallel RLC circuits	

TASK-6 Verification of Thevenin's and Norton's theorems	
Objective:	CO 4
To verify the Thevinins and Norton's Theorem	
TASK-7 Verification of Reciprocity and Millman's Theorems	
Objective:	CO 4
To verify the reciprocity and Millman's Theorems	
TASK-8 Verification of Superposition Theorem	
Objective:	CO 4
To verify the superposition theorem	
TASK-9 Verification of Maximum Power Transfer Theorem	
Objective:	CO 4
To verify the Maximum power transfer theorem	
TASK-10 Verification of compensation Theorem	
Objective:	CO 4
To verify the compensation theorem	

Additio	onal Experiments:									
TASK-11 Verification of mesh & nodal analysis using digital simulation. CO										
Object	Objective:									
To veri	fy mesh analysis using digital simulation.									
TASK-1	L2 Verification of different theorems using digital simulation.	CO 1								
Object	ive:									
To veri	fy different theorems using digital simulation									
Virtua	Labs:									
1.	Parallel RC Circuits									
2.	Parallel LC Circuits									
3.	Thevenin's theorem									
4.	Series RL Circuits									
5.	Norton's Theorem									
6.	Series LCR Circuit									
Self-St	:udy:									
Cont	ents to promote self-Learning:									

SNO	Торіс	СО	Reference
1	Thevinins and nortons	CO1	https://www.youtube.com/watch?v=7JfoDFk61o8
2	Series Resonance in RLC Circuit	CO2	https://www.youtube.com/watch?v=YLGrugmDvc0
3	Phasor Diagram of RL, RC and RLC Circuits	CO3	https://www.youtube.com/watch?v=HaFrY0qQ-NU

Text Book(s):

1. A Chakrabarthy, "Electric Circuits", Dhanpat Rai & Sons, 6th Edition, 2010.

2. A Sudhakar, Shyammohan S Palli, "Circuits & Networks", Tata McGraw-Hill, 4th Edition, 2010

Reference Book(s):

1. Willam Hayt.jr, Jack E.kemmerly, Steven M.Durbin, "Engineering Circuit analysis" Tata McGraw- Hill, 8th Edition2012

2. Rudrapratap, "Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers", Oxford University Press, 1 st Edition, 1999.

Web References:

- 1. <u>https://www.ee.iitkgp.ac.in/</u>
- 2. http://www.vlab.co.in/lab_ready_for_use.php
- 3. <u>http://vlab.amrita.edu/?sub=1&brch=75</u>

NARAYANA ENGINEERING COLLEGE:NELLORE											
I- B.Tec	h	ENGI	NEERING	& ITWO	RK SHOP ((21ES150	5)	R2021			
	PART – A ENGINEERING WORK SHOP										
Semester	Н	ours / Wee	k		Credits	Max	Marks				
	L	Т	Р	Total hrs	С	CIE	SEE	TOTAL			
Ι	0	0	3	48	1.5	40	60	100			
Pre-re	equisite: Basic	mathema	tics and el	lectronic d	levices.						
Course (Objectives:										
1.	To know basic	workshoj	p processe	es and ado	pt safety p	ractices	while wo	orking with			
	various tools an	nd equipm	ents								
2.	To identify, sel	lect and us	e various	marking, r	neasuring,	holding,	striking	and cutting			
	tools & equipm	nents.		_							
3.	To know abou	t the inter	nal parts	of a comp	outer, assen	nbling a	compute	er from the			
	parts, preparing	g a compu	er for use	by installi	ng the ope	rating sys	stem				
4.	To gain know	ledge abo	it the usa	ge of tool	s like Wo	rd proce	ssors, Sp	readsheets,			
_	Presentations		2								
5.	To learn about	Networki	ng of com	puters and	l use Inter	net facili	ty for Bro	owsing and			
0	Searching		<u> </u>	C.(1		<u>,1 , 1</u>	11.1	11 4			
Course C	Jutcomes: After	$\frac{\text{er success}}{1}$	<u>ful compl</u>	letion of th	<u>ne course,</u>	the stude	ent will t	be able to:			
	Understand t	he safety a	aspects in	using the t	$\frac{1}{1}$	quipment	S.(BL-2)	-1 (DL 2)			
CO2	Apply tools for	$\frac{\text{or making}}{1}$	models in	respective	e trades of	engineer	ing works	$\frac{\text{shop.}(\text{BL-3})}{2}$			
003	Apply basic e	iectrical e	ngineering	g knowledg	ge to make	s imple h	ousew1r1	ng circuits			
<u> </u>	And check the	o disasson	hla and a	-3)	Dorsonal C	omputor	and prop	are the			
004	Computer roo	dy to used	$\frac{1010}{21}$ and a	ssemble a	rersonal C	omputer	and prep	are the			
CO5	A nnly knowl	uy to use()	oreenneet	two or mo	ro commut	ore for in	formation	n choring			
005	(BI_3)	suge to m	erconnect		ne comput	ers for m	10111111101	n sharing			
	(DL-3)										

CO-PO Mapping														
		PO PSO												
	PO	PO P										PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2				3								1	3
CO2	2				3								1	3
CO3	2				3								1	3
CO4	2				3								1	3
CO5	2				3								1	3
1: Low, 2-Medium, 3- High														

COURSE CONTENT (TRADES FOR PRACTICE)

Trade -1 Carpentry (6 H)

Familiaritywithdifferenttypesofwoodsandtoolsusedinwoodworkingandmakefollowingjointsfromoutof 300x40x25 mms of two od stock.

a) Half–Lapjoint.

b) Mortise and Tenonjoint

Trade-2 Fitting (6 H)

i.]Familiarity with different types of tools used in fitting and do the fitting exercises out of 80 x 50 x 5 mm M.S. stock

a) V-fit b) Dovetail fit

Trade – 3 Sheet Metal Work (6 H)

Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from out of 22 or 20 guage G.I. sheet a) Tapered tray b) Conical funnel

Trada / Flactrical House Wiring (6 H)
Trade – 4 Electrical House Willing (011)
Familiarities with different types of basic electrical circuits and make the following electrical
connections
a) I wo lamps in series
b) Two way switch
c) Tube light
d) Two lamps in parallel with 3 pin plug and switches
Trade 5 – Welding
Familiarity with different types of tools used in welding and do the following welding exercises
1. Single V butt joint
2. Lap joint
Text Book(s):
 Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of WorkshopTechnology"Vol-I2008&Vol-II2010MediaPromoters&Publishers Pvt.Limited,Mumbai.
 KalpakjianS.andStevenS.Schmid, "Manufacturing Engineering and Technology" 4thEdition, Pearson Education IndiaEdition, 2002.
3. P. Kannaiah&K. L. Narayana "Workshop manual" 2 nd Ed., Scitech publications
Pvt.Ltd.,Hyderabad,2008.
Reference Book(s):
 Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", Pearson Education2008.
WebResources:
1. https://www.muet.edu.pk/sites/default/files/images/users/41/Workshop%20Intro.pdf

2. http://ecoursesonline.iasri.res.in/mod/page/view.php?id=98826

PART-B IT WORKSHOP LAB

Course Objectives:

- 1. To provide Technical training on Productivity tools like Word processors, Spreadsheets, Presentations.
- 2. To make the students know about the internal parts of a computer, assembling, installing the operating system.
- 3. To teach connecting two or more computers.

Course Outcomes: After successful completion of the course, the student will be able to:

- CO1 Understand functionalities of a computer and operating system. (BL-2)
- CO 2Practice Word processors, Presentation and Spreadsheet tool.(BL-2)CO 3Connect computer using wired and wireless connections.(BL-2)

			1		0								,	
	CO-PO Mapping													
						P	0						PSO	
	PO	O PO												
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1													
CO2	1													
CO3	1													
		1: Low, 2-Medium, 3- High												

COURSE CONTENT	CO
Task-1 Learn about Computer (4H)	
Identify the internal parts of a computer and its peripherals. Represent the same	CO 1
in the form of diagrams including Block diagram of a computer. Write	
specifications for each part of a computer including peripherals and	
specification of Desktop computer. Submit it in the form of a report.	
Task -2 Assembling a Computer (4H)	
Disassemble and assemble the PC back to working condition. Troubleshoot the	CO 1
computer and identify working and non-working parts. Identify the problem	
correctly by various methods available (eg: beeps). Record the process of	
assembling and trouble-shooting a computer.	CO 1
Task-3 Install Operating system (2H)	01
Install Linux, any other operating system (including proprietary software) and make	
the system dual boot or multi boot. Record the entire installation process.	
TASK-4 Operating system features (2H)	CO 1
Record various features that are supported by the operating system(s) installed.	
Submit a report on it. Access CD/DVD drives, write CD/DVDs, access pen drives,	
print files, etc. Install new application software and record the installation process.	
TASK-5 Word Processor (6H)	CO 2
Create documents using the word processor tool. Tasks to be performed are	
inserting and deleting the characters, words and lines, Alignment of the lines,	
Inserting header and Footer, changing the font, changing the colour, including	
images and tables in the word file, making page setup, copy and paste block of text,	
images, tables, linking the images which are present in other directory, formatting	
paragraphs, spell checking, etc. Prepare project cover pages, content sheet and	
chapter pages at the end of the task using the features studied. Submit a report of the	
word processor considered.	
Create documents using the word processor tool. Mail Merge in word processor for	

creating appointment orders for 10 employee records in excel.	
TASK-6 Spreadsheet (4H)	CO 2
To create, open, save the spreadsheet and format them as per the requirement. Some	
of the tasks to be practiced are Managing the worksheet environment, creating cell	
data, inserting and deleting cell data, format cells, adjust the cell size, applying	
formulas and functions, preparing charts, sorting cells, working with pivot tables	
and charts. Submit a report of the Spreadsheet application considered.	
TASK-7 Presentations (6H)	CO 2
To create, open, save and run the presentations, Select the style for slides, format	
the slides with different fonts, colors, create charts and tables, insert and delete text,	
graphics and animations, bulleting and numbering, hyperlink, set the time for slide	
show, Record slide show. Submit a report of the Presentation tool considered.	
TASK-8 Wired network & Wireless network (4H)	CO 3
Select a LAN cable, Identify the wires in the cable, Define the purpose of each wire,	
Study the RJ45 connecter, Use crimping tool to fix the cable to the connecter, Test	
the cable using LAN tester, Connect two or more computers using cross and straight	
cables, Configure the computers, share the data between the computers.	

Additional Experiments:						
TASK -1 IoT	CO 3					
Raspberry Pi Study the architecture of Raspberry pi, configure software, Install SD						
card, Connect the cables, Install Raspbian (or any other) operating system,						
Configure Wi-Fi, Remotely connect to your Raspberry Pi.						
TASK -2 OUTLOOK, MACROS						
Practice the following tasks and submit report						
A. Configure outlook and access mails.						
B. Create Macros in word and spreadsheet tools						

Text Book(s):

1. B.Govindarajulu, "IBM PC and Clones Hardware Trouble shooting and Maintenance",2nd edition, Tata McGraw-Hill, 2002

2. "MOS study guide for word, Excel, Powerpoint& Outlook Exams", Joan Lambert, Joyce Cox, PHI.

3. "Introduction to Information Technology", ITL Education Solutions limited, Pearson Education.

Reference Book(s):

- 1. Rusen, "Networking your computers and devices", PHI
- 2. Bigelows, "Trouble shooting, Maintaining & Repairing PCs", TMH.

On-line/Web Resources:

https://turbofuture.com/computers/Dissassembling-and-Assembling-the-computer-system https://www.instructables.com/id/Disassemble-a-Computer/

https://www.windowscentral.com/how-do-clean-installation-windows-10

https://www.tutorialspoint.com/ms_excel_online_training/index.asp

https://www.raspberrypi.org

	NARAYANA ENGINEERING COLLEGE::NELLORE												
I-B.Tech	Pr	Problem Solving and Programming Lab (21ES1501) R2021											
Semester	H	ours / Wee	ek	Total	Credit	Max Marks							
	L T P hrs C					CIE	SEE	TOTAL					
Ι	0	0	3	48	1.5	40 60 100							

Pre-requisite: Mathematics Knowledge, Analytical & Logical Skills

Course Objectives:

- 1. To work with the compound data types
- 2. To explore dynamic memory allocation concepts
- 3. To design the flowchart and algorithm for real world problems
- 4. To write C programs for real world problems using simple and compound data types
- 5. To employee good programming style, standards and practices during program development

Course Outcomes: After successful completion of the course, Student will be able to:

CO 1 | Translate algorithms into programs (In C language) (BL - 2)

CO 2 Code and debug programs in C program language using various constructs.(BL - 3)

CO 3 Solve the problems and implement algorithms in C. (BL - 3)

CO 4 Make use of different data types to handle the real time data (BL - 3)

	CO-PO Mapping													
						P	0						PSO	
~ ~	PO1 PO2 PO												PSO1	PSO 2
CO			3	4	5	6	7	8	9	10	11	12		
CO1	1	2											1	
CO2	2	2	2										2	1
CO3	2	2	3	1	2								2	2
CO4	2	2	3	1	1								2	2
	1: Low, 2-Medium, 3- High													

 COURSE CONTENT
 CO

 TASK-1 (3H)
 IPractice DOS and LINUX Commands necessary for execution of C Programs.

 2Study of the Editors, Integrated development environments, and Compilers in chosen platform.
 CO 1

 3Write, Edit, Debug, Compile and Execute Sample C programs to understand the Programming environment.
 CO 1

 1. Practice programs: Finding the sum of three numbers, exchange of two numbers, largest of two numbers, to find the size of data types, Programs on precedence and Associativity of operators, sample programs on various library functions.
 CO 1

 TASK-3 (6H)
 TASK-3 (6H)
 CO 1

1. Write a program to find the roots of a Quadratic equation.	
2. Write a C program to calculate the factorial of a given positive integer.	CO1
3.Fibonacci sequence is defined as follows: the first and second terms in the	
sequence are 0 & 1. Subsequent terms are found by adding the preceding two terms	
in the sequence. Write a C program to generate the first n terms of the sequence.	
TASK-4 (6H)	
4. Write a C program to find the sum of individual digits of a positive integer.	
1. Write a program to reverse the digits of a number.	CO 2
2. Write a program to generate the series of prime numbers in the given range.	
7.Write a program to check for number palindrome.	
TASK-5 (6H)	
1. Write a C program for the following that use both recursive & non-recursive	
functions:	
a. To calculate the factorial of a given positive integer.	CO 2
b. To find the greatest common divisor of two given integers.	
c. To generate Fibonacci series.	
2 Illustrate the use of auto, static, register and external variables	
TASK-6 (3H)	
1 Write a program to find the sum of positive and possitive numbers in a given set	
of numbers	CO 3
Of humbers.	005
bacoma [5,4,3,2,1]	
2 Write a program to find the maximum of a set of numbers	
TASK-7 (6H)	
1. Write a C program that use pointers to find Addition of Two Matrices	CO^{2}
2. Write a C program that use functions to find Multiplication of Two Matrices	05
TASK-8 (3H)	
1.Write a program to accept a line of characters and print the number of vowels,	
Consonants, blank spaces, digits and special characters.	CO 3
2. Write a C program to check whether a given string is a palindrome or not,	
without using any built-in functions.	
TASK-9 (6H)	
1.Write a C program to find the length of a given string using pointers.	
2.Write a C program to add two distances in feet and inches using structure	
3. Write a C program to read and print an employee's detail using structure	CO 4
4. Write a C program to read and print book information using union	
TASK-10 (6H)	
Write a program to split a "file" into two files, say file1 and file2. Write lines into	
the 'file' from standard input. Read the contents from 'file' and write odd numbered	CO 4
lines into file1 and even numbered lines into file?	
2. Write a program to merge two files	
ADDITIONAL TASKS	
1 Write a program to find the Abundant Number	
2 Write a program to insert the element in a given position	
	1

Virtual Labs:									
1. Problem Solving Lab (IIIT HYDERABAD) :	http://ps-iiith.vlabs.ac.in/								
List of Exp	eriments								
1. Numerical Representation	6. Recursion								
2. Beauty of Numbers	7. Advanced Arithmetic								
3. More on Numbers	8. Searching and Sorting								
4. Factorials	9. Permutation								
5. String Operations	10.Sequences								
2. Computer Programming Lab (IIIT HYDERA	BAD) : http://cse02-iiith.vlabs.ac.in/								
List of Exp	eriments								
1. Numerical Approximation	6. Basic Control Flow								
2. Functions	7. Pointers								
3. Advanced Control Flow	8. Recursion								
4. Arrays	9. Expression Evaluation								
5. Structures									

Text Book(s):

1. "How to Solve it by Computer", R.G. Dromey, 2014, Pearson.

2.Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A.Ananda Rao, Pearson Education, 1st Edition, 2010.

Reference Book(s):

1."The C Programming Language", Brian W. Kernighan, Dennis M. Ritchie, 2nd Edition, Pearson.

2."Let us C", Yeswant Kanetkar, BPB publications

3."Pointers in C", Yeswant Kanetkar, BPB publications, 16th Edition, 2017

4.Computer Science, A Structured Programming Approach Using C by Behrouz

Forouzan & Richard F. Gilberg, 3rd Edition, Cengage Learning

5.C Programming A Problem-Solving Approach, Behrouz A. Forouzan & E.V. Prasad,

6.F. Gilberg, 3rd Edition, Cengage Learning

7. Programming with C Rema Theraja, Oxford, 2018

8. Programming in C, 3rd Edition, 2015, Ashok N. Kamthane, Pearson Education

9. Programming in C, 3/e : A Practical Approach by Ajay Mittal, Pearson Publication

10.Problem Solving with C by SOMASHEKARA, M. T., GURU, D. S., MANJUNATHA, K. S., PHI Learning, 2nd Edition, 2018

11.C Programming with problem solving, J.A. Jones & K. Harrow, Dreamtech Press, 2001

12.Byron Gottfried, Schaum's Outline of Programming with C, 4th Edition, 2018, McGraw-Hill

Web Resources:

1.<u>https://www.includehelp.com/c-programs/advacnce-c-examples.aspx</u>

2.<u>https://www.programiz.com/c-programming/examples</u>

3.<u>https://www.javatpoint.com/c-programs</u>

4.https://www.w3resource.com/c-programming-exercises/

5.<u>https://www.sanfoundry.com/simple-c-programs/</u>

6.https://www.includehelp.com/c-programming-examples-solved-c-programs.aspx

7.<u>http://www.c4learn.com/c-programs/tag/c-programs-typical-programs</u>

	NARAYANA ENGINEERING COLLEGE::NELLORE											
I- B.T e	ech		Comm	unicatio	on skills	Lab (21)	EN1502)		R2021			
Semeste	ster Hours / Week				Total	Credit		Max Mar	:ks			
		L	Т	Р	hrs	С	CIE	SEE	TOTAL			
Ι		0 0 2 36 1 40 60 100										
Pre-re	Pre-requisite: English											
Course	e Ou	tcomes:	After suc	cessful co	ompletion	of the co	ourse, Stud	lent will b	be able to:			
CO 1	То	develop k	knowledg	e, skills, a	and judgı	ment arou	nd human	communi	cation			
	that	t facilitate	s their ab	ility to wo	ork collabo	oratively w	vith others	•				
CO 2	CO 2 Develop their public speaking abilities to speak both formally and informally.											
CO 3	CO 3 Understand the nuances of English language and skills required for effective											
	Par	ticipation	in group	activities.								

CO-PO Mapping															
CO		РО													
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1									2	3					
CO2									2	3					
CO3									2	3					
				1	: Lov	v, 2-N	lediur	n, 3- 1	High						

TASK – 1

Ice - Breaking Activity, Introducing Oneself and Others – Role Plays - Oral Description of Pictures, Photographs, Products, and Process

Practice-1 : - Ice Breaking Activity, Introducing Oneself and Others.

Practice-2 : Role Plays

Practice-3 : Oral Description of Pictures, Photographs, Products, and Process

TASK - 2

What is Debate, How to Debate, Tips for Debate, Debate Practice, Explanation of Debate Techniques, Debate Videos Presentation-Telephone Etiquette, Making an Appointment, Telephone Talk and Tips

Practice-4: Debate (Planned & Extempore)

Practice-5: Telephonic Conversation Practice

TASK - 3

What is Group Discussion, Types of Group Discussion, Tips and Techniques for Effective Group Discussion, Group Discussion Videos Presentation
Practice-6: Group Discussions (Planned & Extempore)
Practice-7: Group Discussions ()

TASK-4

Email writing - Resume Writing: Cover Letter - Structure of Resumes - Types of Resumes

Practice-8 : Cover Letter **Practice-9 :** Resume Writing

TASK - 5

Oral presentations (individual and group) through Seminars / PPTs - Importance of Body Language -Poster Presentation - Public Speaking Tips, Effective Presentation of renowned speakers. **Practice-10 :** Public Speaking / Oral Presentations **Practice-11 :** Presentation using PPTs **Practice-12 :** Poster Presentation

NARAYANA ENGINEERING COLLEGE::NELLORE														
I-B.Tech				CH	IEMI	STRY	(21CI	H1001)					R202	21
Semester		Ho	ours / W	'eek		Tota	al	Credit			Ma	ax Mar	`ks	
	L	,	Т		Р	hrs		С	CI	E	SEE		TOT	AL
II	3		0		0	48		3	4	0	60		100)
Pre-requ day life, l	isite: E Fossil f	Basic o uels	concep	ts in cl	hemist	try, Ad	lvance	d engi	neerin	g mat	erials,	chemi	istry in d	ay to
Course (Course Objectives:													
1	т ·	1	1.	1		1	1	• ,	1	1				
 To impart technological aspects of modern chemistry and its applications. Understand the chemistry behind electrochemical energy systems 														
2.	To train	the st	udents d	on the i	nrincin	les and	annlia	ations of	y sysic. of nolv	mers				
4. '	To acqu	ire kno	wledge	of engi	ineerin	g mater	ials and	d fuels.	r Pory					
······································														
Course Outcomes: After successful completion of the course, the student will be able to:														
CO 1	CO1 Understand the fundamental concepts of chemistry to predict the structure and bonding of materials.(BL-2)													
CO 2	CO 2 Discuss various kinds of electro chemical cells.(BL-3)													
CO 3	CO 3 Compare the materials of various energy storage devices and emerging technologies.(BL-3)													
CO 4	Demo	nstrat	e the me	chanis	sm and	applic	ations	of diffe	rent po	olymer	s in ele	ctronic	e devices.	(BL-3)
CO 5	Explai	in calo	orific va	lues, r	efinin	g of pe	troleu	m and c	rackir	ng of c	oils.(BI	L-2)		
						CO-P	O Maj	oping						
						Р	0						PS	50
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO
<u> </u>	1	2	3	4	5	6	7	8	9	10	11	12		2
	5												-	
<u>CO2</u>	3													
<u>CO3</u>	3						3	<u> </u>						
<u>CO4</u>	3						3							
1: Low, 2-Medium, 3- High														
					~									

COURSE CONTENT										
MODULE – 1 Structure and Bonding Models 10 Hrs										
Structure and Bonding Models: Dual nature of matter- De Broglie's equation, Schrodinger wave equation, Molecular orbital theory – bonding in homo and hetero nuclear diatomic molecules– energy level diagrams of O_2 and CO, etc. π -molecular orbital's of butadiene and benzene, calculation of bond order and magnetic properties, Crystal field theory – salient features – splitting in octahedral and tetrahedral complex.										
At the end of the M 1. Understa bonding of	odule 1, student will be able to: and the fundamental concepts of chemistry to predict the structure, properties a f Engineering materials.(BL-2)	and								

2. Explain the calculation of bond order of O₂ and Co molecules.(BL-2)

3. Discuss the magnetic behavior and colour of coordination compounds.(BL-2)

MODULE -2	Electro Chemistry	10 Hrs						
Electro chemistry: Electrode potential, EMF of an electrochemical cell, Nernst equation, Electrodes – concepts, reference electrodes (standard hydrogen, Calomel electrode, and glass electrode), potentiometry-potentiometric titrations (red ox titrations), concept of conductivity, conductometric titrations (acid- base titrations). PV Cell and its applications.								
At the end of the Mo	odule 2, students will be able to:							
 Demonstr Explain th List the di Differenti Illustrate 	 Fate competency in the basic concepts of electrochemical cells. (BL-3) he significance of electrode potentials. (BL-2) fferent types of electrodes. (BL-1) ate between Potentiometric and conductometric titrations. (BL-2) the construction of PV cell. (BL-3) 							
MODULE-3	Battery Technology	09 Hrs						
Battery Technolog batteries- zinc-air, li classification, hydro	y: Introduction, classification of batteries, Important applications of batteri thium cells,Li- MnO ₂ cell, Ni-Cd cell, lead acid storage cell. Fuel cells- In gen - oxygen fuel cell, methanol - oxygen fuel cell, SOFC - Merits and de	es, Modern troduction – merits of fuel						
<u>cell.</u> At the end of the Mo	odule 3, students will be able to:							
2. Explain t 3.Identify th 4. Compare MODULE-4	he concept involved in the construction of batteries. (BL-2) e significance of batteries.(BL-1) the merits of different fuel cells. (BL-2) Polymer Chemistry	10 Hrs						
Polymer Chemistry polymer formation. of –PVC,PTFE, Bak Elastomers–Buna-S acetylene, poly anil	y: Introduction to polymers, polymerization, types of polymerization, mec Plastics - Thermoplastics and Thermosetting, Preparation, properties and celite, Urea- formaldehyde resin, Nylons. Natural Rubber, processing, vul- , Buna-N-preparation, properties and applications. Conducting polymers ine, mechanism of conduction and applications.	hanism of applications canization. – poly						
At the end of the Mo	odule 4, students will be able to:							
 Identify di Distinguis Explain th Apply the Application 	fferent types of polymers. (BL-1) h between thermoplastic and thermo setting resins. (BL-2) e preparation, properties and applications of some plastic materials. (BL-2) knowledge of advanced polymers, conducting polymers for different ons. (BL-3)							
MODULE-5	Fuel Technology	09 Hrs						
Fuel Technology: A &LCV, Solid fuels, synthetic petrol prepand coal gas.	Introduction, Types of fuels, characteristics of good fuel, units, calorific value Analysis of coal-proximate and ultimate. Liquid Fuels: refining of petrological paration by Fischer- tropsch Process, Gaseous fuels; Natural gas, water gas,	ue, HCV eum, producer gas						
At the end of the Mo 1. Differentia (BL-2) 2. Select suita	odule 5, students will be able to: Ate petroleum, petrol, synthetic petrol and have knowledge how they are provided by the	oduced.						

3. Explain calorific values, octane number, refining of petroleum and cracking of oils. (BL-2)

Total hours:	48 Hours
--------------	----------

Content beyond syllabus:

- 1. Valency bond theory
- 2. Compounding of natural rubber
- 3. Fuel analysis and methods for preparation of synthetic petrol

Self-Study:

Contents to promote self-Learning:

SNO	Module	Reference
1	Molecular orbital	https://www.youtube.com/watch?v=FMxuss0RXOU
	theory	
2	Reference	https://www.youtube.com/watch?v=WMfXlncyMDc
	electrodes	
3	Battreies	https://nptel.ac.in/courses/103/108/103108162/
4	Plastics	https://www.youtube.com/watch?v=FATc12opDCA
5	Refining of	https://www.youtube.com/watch?v=INqhbIl8r4Q
	petroleum	

Text Book(s):

- 1. P. C. Jain & Monika Jain, *Engineering Chemistry*, Dhanpat Ray Publishing Company (P) Ltd, New Delhi, 16th edition, 2013.
- 2. K. N. Jayaveera, G. V. Subba Reddy and C. Ramachandraiah, *Engineering Chemistry*, McGraw Hill Publishers, New Delhi.
- 3. Energy scenario beyond2100, by S.Muthu Krishna Iyer.

Reference Book(s):

1. J. D. Lee, *Concise Inorganic Chemistry*, Oxford University Press, 5th edition 2010.

2. Skoog and West, Principles of Instrumental Analysis, Thomson, 6th edition, 2007.

3. Peter Atkins, Julio de Paula and James Keelar, *Atkins' Physical Chemistry*, Oxford University Press, 10th edition, 2010.

Online Resources /Web References:

- 1. <u>https://drive.google.com/file/d/0Bz82vSA0C1xlWC11WkpsTmlwQVk/view</u>
- 2. https://www.cgaspirants.com/2017/08/engineering-chemistry-by-jain-jain.html
- 3.https://www.pdfdrive.com/concise-inorganic-chemistry-d33405948.html
- 4.https://chemistry.com.pk/books/skoog-principles-of-instrumental-analysis1/

5.<u>https://www.thermalfluidscentral.org/e-books/book-intro.php?b=39</u>

6.file:///C:/Users/DELL/Downloads/HandbookOfInstrumentalTechniquesForAnalyticalChemistryPDFDrive.com.pdf

- 7. https://nptel.ac.in/courses/104/106/104106096/
- 8. <u>https://youtu.be/KHh_IX1G6uA</u>

9.https://www.youtube.com/watch?v=MfbxR9ZDs0s&feature=youtu.be

- 10.https://nptel.ac.in/courses/113/105/113105028/
- 11.https://www.youtube.com/watch?v=15MY7abeCDk

NARAYANA ENGINEERING COLLEGE: NELLORE											
I-B. Tech		VECTOR	CALCUI	LUS CON	IPLEX VA	ARIABLI	ES &	R-2021			
	TRANSFORMS (21MA1003)										
Semester	Hours / Week Total Credit Max Marks										
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II	3	1	0	64	4	40	60	100			
Pre-requis	site: inter	mathemati	cs								
Course O	bjectives: 🛛	This course	aims to pro	viding the	knowledge	for the stuc	lent about on				
1. To	enlighten th	ne learners	in the conce	ept of vecto	r differentia	ation and in	tegration.				
2. To	understand	the concep	t the limit,	continuity &	& differentia	ation of con	nplex variable				
3. To	Evaluate th	e improper	integrals b	y complex i	integration						
4. To	understand	the concep	ts of Laplac	ce transform	ns and Inve	rse Laplace	e transforms & it	S			
pro	perties.										
5. To	understand	the concep	ts of Fourie	er series, Fo	urier transf	orms and it	s properties.				
Course Ou	utcomes: A	fter succes	ssful compl	etion of th	e course, th	e student	will able to:				
CO 1	Interpret t	he differen	nt operators	such as gr	adient, cur	l and diver	gence to find ou	ıt point			
	function										
	(L-3)										
CO 2	Understan	d the conce	ept the limit	, continuity	& differen	tiation of c	omplex variable	(L-3)			
CO 3	Evaluate t	he integral	by using co	ntour integ	ration			.(L-5)			
CO 4	Apply the	Laplace tra	ansform to c	convert time	e domain in	to frequenc	y domain & Inv	erse Laplac			
	transforms	s technique	s to solve th	e differenti	al equation	s	-	(L-3)			
CO 5	Develop th	ne Fourier S	Series to the	e given peri	odic functio	ons		(L-3)			

	CO-PO Mapping														
	РО													PSO	
CO	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
		2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3													
CO2	3	3													
CO3	3	3													
CO4	3	3													
CO5	3	3													
					1-	Low, 2-	Medium,	3-High							

COURSE CONTENT									
MODULE – 1 Vector Calculus Hours: 12h(9L+3T									
Scalar and vector	point functions, vector operator del, del applies to scalar po	int functions Gradient, del							
applied to vector	point functions-Divergence and Curl, Line integra circu	lation-work done, surface							
integral-flux, Gre	en's theorem in the plane (without proof), Stoke's theorem	n (without proof), volume							
integral, Diverger	nce theorem (without proof) and applications of these theorem	ns.							
At the end of the M	lodule 1, students will be able to:								
1. Apply	del to Scalar and vector point functions	(L-3)							
2. Illustra	te the physical interpretation of Gradient, Divergence and Cu	url (L-2)							
3. Apply	del to scalar and vector point functions.	(L-3)							
4. Illustra	te the physical interpretation of gradient, divergence and cur	l. (L-2)							

MO	DULE -2	Complex variables – Differentiation	Hours: 12	2h(9L+3T)					
Introd	uction to fu	nctions of complex variable-concept of Limit & continuity	y Differentia	tion, Cauchy-					
Riema	nn equation	s, analytic functions, harmonic functions finding harmonic	conjugate-c	onstruction of					
analyti	ic function b	by Milne Thomson method.							
At the e	nd of the M	odule 2, students will be able to:							
	1. Find the	e work done in moving a particle along the path over a force	field	(L-1)					
	2. Evaluat	e the rates of fluid flow along and across curves.		(L-5)					
3. Evaluation of surface areas integrals by applying Green's theorems.									
	4. Evaluation of volume integrals by applying Gauss theorems. (L-								
	5. Evaluat	ion of line integrals by applying Stokes theorems.							
	(L-5)								
MO	DULE-3	Complex variables – Integration	Hours: 1	2h(9L+3T)					
Line i	ntegral-Con	tour integration, Cauchy's integral theorem (without proof) Cauchy Int	egral formula					
(witho	ut proof), z	eros of analytic functions, singularities Laurent's series; H	, Residues, Ca	uchy Residue					
theore	m (without	proof), Evaluation of definite integral involving sine and co	sine, Evalua	tion of certain					
improp	per integrals	(around unit circle semi-circle with $f(z)$ not having poles or	n real axis).						
	At the en	d of the Module 3, students will be able to:							
1.	Understand	the integration of complex functions.		(L-3)					
2.	Apply Cauc	hy's integral theorem and Cauchy's integral formula.		(L-3)					
3.	Understand	singularities of complex functions.		(L-3)					
4.	Evaluate im	proper integrals of complex functions using Residue theorem	m.	(L-3)					
			TT 4.						
MO	DULE-4	Laplace Transforms	Hours: 10	5h(12L+4T))					
Defini	tion-Laplac	e transform of standard functions-existence of Laplace Tran	sform Invers	se transform –					
First s	shifting The	orem, transforms of derivatives and integrals Unit step i	tunction – Se	cond shifting					
Differ	nn–Dirac s	d integration of transform solving Initial value problem	in of Perio	v differential					
equation	ons with cor	astant coefficients using Lanlace transforms	is to ortina	y differential					
At the e	nd of the M	odule 4, students will be able to:							
1.	Understand	the concept of Laplace transforms and find the Laplace trans	sforms of el	ementary					
	functions.			(L-3)					
2.	Find the La	place transforms of general functions using its properties.		(L-2)					
3.	Understand	Laplace transforms of special functions (Unit step function,	Unit Impuls	e & Periodic).					
				(L-3)					
4.	Apply Lapl	ace transforms to solve Differential Equations.		(L-3)					
	11 7 1	Equation Transform Fourier Series & Fourier		· · ·					
MO	DULE-5	Fourier Transform Fourier Series & Fourier Transforms	Hours: 1	2h(9L+3T)					
Fouri	er Series:	Determination of Fourier coefficients (Euler's)–Diri	chlet condi	tions for the					
existe	nce of Fo	urier series-functions having discontinuity-Fourier s	eries of Ev	ven and odd					
functi	ons – Half-	range Fourier sine and cosine expansions.							
Fouri	er Transf	form: Fourier integral theorem (without proof)–Fo	ourier sine	and cosine					
integr	als-comple	x form of Fourier integral. Fourier transform Fo	ourier sine	and cosine					
transf	orms Prope	erties – Inverse transforms.							
At the e	nd of the M	odule 5, students will be able to:							
1.	Understand	the concepts of Fourier transforms.		(L-2)					
2.	Apply the p	roperties of Fourier transforms to various engineering probl	ems.	(L-3)					
3.	Apply the c	oncepts of Fourier transforms to Find impulse.		(L-3)					
4.	Make use o	f the Fourier transforms and its inverse in practical applicati	ons of electro	onics					
	engineering		otol horres	(L-3)					
		1	otal nours	04					

Content beyond syllabus

- 1. Complex Fourier series.
- 2. Parseval's Identity for Fourier Transforms.

Self-Study:

Contents to promote self-Learning:

0011101110	s to promote sen zeminig.		
SNO	Торіс	CO	Reference
1	Vector Differentiation & vector integration	CO1	https://youtu.be/a19x_YG0oLg
2	Complex differentiation	CO2	https://youtu.be/pfCwRLK29h4https://youtu.be/KH iw9Vs-aLM
3	Complex integration	CO3	https://youtu.be/luJM137- nsohttps://youtu.be/EDVJotmT584
4	Laplace transform &Inverse Laplace transforms	CO4	https://youtu.be/9NqdBXNyJPkhttps://youtu.be/0ZIT hUd-yyw
5	Fourier series & Fourier transforms	CO5	https://youtu.be/4cSZDHxyBf4

Text Book(s):

- 1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers.
- 2. Ramana B.V., "Higher Engineering Mathematics", McGraw Hill Publishers.

Reference Book(s):

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley.
- 2. Veerarajan T., "Engineering Mathematics", Tata McGraw-Hill.
- 3. N.P. Bali and Manish Goyal,"AText ook of Engineering Mathematics", Laxmi Publication

Online Resources/ Web References:

- 1. <u>http://keralatechnologicaluniversity.blogspot.in/2015/06/erwin-kreyszig-advanced-engineering-mathematics-ktuebook-download.html</u>
- 2. http://www.faadooengineers.com/threads/13449-Engineering-Maths-II-eBooks .
- 3. <u>http://www.efunda.com/math/math_home/math.cfm</u>
- 4. <u>http://www.ocw.mit.edu/resources/#Mathematics</u>
- 5. http://www.sosmath.com/
- 6. http://www.mathworld.wolfram.com

NARAYANA ENGINEERING COLLEGE::NELLORE															
I-B.Te	ch	PY	THO)N PI	ROGI	RAM	MINO	G AN	D DA'	ГA S	CIEN	CE	I	R2021	
						(2	1ES1()05)							
Somost	or	ł	Iours	/We	ek		Tota	I C	redit			Max I	Marks		
Semes		L		Т	P		hrs		С	C	IE	SE	E T	OTAL	
II	II 3 0 0 48 3 40 60											100			
Pre-ree	quisit	e: Bas	ics of	i prog	gramı	ning	Lang	uage	•						
Course	Course Objectives:														
1.	1. To learn about Python programming language syntax, semantics, and the runtime														
	environment														
2.	To be	famil	iarize	d witl	h gen	eral c	ompu	ter pi	ogran	ming	conc	epts 1	ike con	ditional	
	execut	tion, lo	ops &	k func	tions										
3.	To lea	rn abo	ut mu	table	and ir	nmuta	able ty	pes.							
4.	To lea	rn abo	ut the	data	scienc	e rela	ited fu	nctio	ns in N	JUME	PY.				
5.	To sol	lve dat	a scie	nce pr	oblen	ns usi	ng PA	NDA	S.						
Course	Outco	omes:	After	succe	essful	com	pletio	n of t	he cou	irse, S	Stude	nt wil	l be abl	e to	
CO 1	Dem	onstrat	e var	ious (opera	tors,	data	types	and	decis	ion s	tructu	res in	python.	
	(BL	- 3)													
CO 2	Solv	e probl	ems u	ising	Funct	ions	and d	ata st	ructu	res in	Pythe	on (BI	L - 3)		
CO 3	Impl	ement	the co	oncept	t of F i	iles aı	nd Mo	odules	s (BL ·	- 3)					
CO 4	Impl	ement	Data	Scien	ce que	eries u	ising l	NUM	PY m	odule	(BL -	3)			
CO 5	Solv	e data :	manip	oulatio	on tasl	c usin	g PAI	NDAS	s mod	ıle (B	L - 3)				
						CO-P	O Ma	appin	g						
						P	0						P	SO	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	1											1		
CO2	2	2											2		
CO3	2	1											2		
CO4	2	2											1		
CO5	2	2											1	1	
	1				1: Lo	w, 2-	Mediu	im, 3-	- High	1				·	

COURSE CONTENT										
MODULE – 1 I/O and Decision Structures 10H										
Input and Out	Input and Output: Introduction to Python and installation, Input and Output, Comments,									
Variables, Operat	ors. Type conversions, Expressions, Data types.									
Decision Structures	and Boolean Logic: if, if-else, if-elif-else Statements, Nested D	Decision Structures.								
Looping: while loop,	for loop, Nested Loops.									
At the end of the l	Module 1, students will be able to:									
1. Describe pyth	on expressions, data types (BL-2)									
2. Perform varie	bus Arithmetic calculations using Operators in Python(BL-3)									
3. Demonstrate	the usage of looping structures in python Language.(BL-3)									
MODULE -2	MODULE -2Functions and Data structures10H									
Functions: Definition	Functions: Definition, Function Arguments, Anonymous Function, Scope of the variable and									
namespacing, Recurs	sion, Map, Filter and Reduce Functions									

Strings, Lists, Tuples and Dictionaries: String Methods and Operations, Lists: Operations and Methods, Tuples: Operations and Methods, Dictionaries: Operations and Methods. At the end of the Module 2, students will be able to: 1. **Implement Functions** to solve problems.(BL-3) 2. **Describe** various **String** handling functions in python(BL-2) 3. Describe the various Lists, Tuples and Dictionaries in python(BL-2) **MODULE-3 Files and Modules** 10H Files: Text Files, File Operations, File Functions, Copying the Files, Two Files Merging into Single File. **Modules:** Modules, Standard Modules, Packages. At the end of the Module 3, students will be able to: 1. Describe the concepts of Files (BL-2). 2. Describe the importance of Modules and packages (BL-2). **MODULE-4 Introduction to Numpy** 9H **Introduction to Numpy**: Fixed-Type Arrays in Python, Creating Arrays from Lists, Creating Arrays from Scratch Numpy Standard Data Types, The Basics of Numpy Arrays, Numpy Array Attributes. Array Indexing: Accessing Single Elements, Array Slicing: Accessing Subarrays, Reshaping of Arrays, Array Concatenation and Splitting. Computation on Numpy Arrays: Universal Functions. At the end of the Module 4, students will be able to: 1. Describe the concept of **Numpy** Module(BL-2) 2. Solve numerical problems related to data science using Numpy Arrays.(BL-3) 3. Apply Universal Functions for Data Science problems(BL-3) **MODULE-5 9H Data Manipulation with Pandas** Data Manipulation with Pandas: Installing and Using Pandas, Introducing Pandas Objects, Pandas Series Object, Pandas DataFrame Object, Pandas Index Object, Data Indexing and Selection Data Selection in Series. Data Selection in DataFrame Operating on Data in Pandas Ufuncs: Index Preservation UFuncs: Index Alignment, Operations Between DataFrame and Series, Handling Missing Data, Trade-Offs in Missing Data Conventions, Missing Data in Pandas, Operating on Null Values. At the end of the Module 5, students will be able to: 1. Describe the concept of **Data Manipulation** (BL-2). 2. Describe the concept of **Pandas** for Data Science(BL-2) 3. Apply Ufunctions in pandas to generate **DataFrame** (BL-3) 4. Implement Pandas Module to handle Missing Data(BL-3) **Total hours: 48 HOURS Content Beyond Syllabus:** 1. Regular Expressions 2. Matplotlib Self-Study: Contents to promote self-Learning: S No Module Reference https://www.youtube.com/watch?v=JBc8LLW5KLO 1 I/O and Decision Structures https://www.youtube.com/watch?v=PqFKRqpHrjw https://www.youtube.com/watch?v=XjfvaFnJ4zk 2 Functions and Data structures https://www.youtube.com/watch?v=m9n2f9lhtrw

https://www.youtube.com/watch?v=ixEeeNjjOJ0

3

Files and Modules

		https://www.youtube.com/watch?v=jZ5agHjNR3U
4	Introduction to Numpy	https://www.youtube.com/watch?v=8vVNq6JzG18 https://www.youtube.com/watch?v=rN0TREj8G7U
5	Data Manipulation with Pandas	https://www.youtube.com/watch?v=8uK65aNfQ3I https://www.youtube.com/watch?v=B42n3Pc-N2A

Text Books:

- 1. Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.
- 2. Python Data Science Hand Book, Jake Vanderplas, First Edition, Oreilly

Reference Book(s):

- 1. Introduction to Python Programming, Gowrishankar. S, Veena A, CRC Press.
- 2. Python Programming: A Modern Approach, Vamsi Kurama, Pearson.
- 3. Python for Data Analysis-Wes McKinney, 2nd-Edition, Oreilly.
- Python Programming: A Modern Approach, Vamsi Kurama, Pearson. Braun W. J., Murdoch D. J., A First Course in Statistical Programming with R, Cambridge University Press, 2007

Online Resources / Web Resources:

- 1. <u>www.tutorialpoint.com/Python</u>
- 2. <u>www.geeksforgeeks.org/python</u>
- 3. www.programiz.com/python-programming
- 4. <u>https://numpy.org</u>
- 5. <u>https://pandas.pydata.org</u>

NARAYANA ENGINERING COLLEGE:NELLORE

ENGLISH (21EN1001)

I-B.Tech	Hours	s / Wee	k	Total hrs	Credit	Max Marks							
Semester	L	Т	Р		С	CIE	SEE	TOTAL					
II	2	0	0	32	2	40	60	100					
Pre-requisite: ENGLISH													
Course Objectives :													
 To explore the students to develop knowledge and awareness of English sentence structure, construction and improvement. To develop the students in getting the information of word power and able them to fit for the competition. To enhance the ability of writing the structural English among the students. To demonstrate the ability to write error free written communication. To distinguish main ideas from specific details and make use of contextual clues to inform meanings of un familiar words. 													
CO 1	Acqu	iirein-	depth l	knowledge (on formulat	ing appropria	te sentence	es with					
	Gran	matic	al accu	racy and als	o develop co	oncept of word	formation.	.(BL2)					
CO 2	Usec	oheren	it and u	unified para	graphs with	n adequate su	pport and	detail and can					
	write	a topi	c sente	ence, suppor	t and concl	uding sentenc	e. (BL2)						
CO 3	Analy mode	y <mark>ze</mark> the 1. (BL -	concep – 4)	ots of variou	is real time	scenarios to	represent	in an effective					
CO 4	Unde	erstan	d the g	rammar rule	es for synth	esisof sentend	ces and use	e pre writing					
	strate	egies to	o plan t	o write dial	ogues, revi	iews and edit	the text						
	effec	tively.	(BL –	2)									
CO 5	cosRelate the skills and sub skillsof reading effectively and provide knowledge on the structure and format of technical writing.(BL - 2)												

COURSE CONTENT

MODULE – 1

Grammar:Parts of Speech – Kinds of Sentences – Sentence structures: Identifying the sentences,SentencePattern,SentenceImprovementandConstruction,SentenceCompletion,Sente nceArrangement,Joiningsentences,Parajumbles.

Vocabulary:Concept of word formation – Synonyms& Antonyms – HomonymsHomophones –Prefixes&suffixes–CommonlyconfusedWords–Onewordsubstitutes–Idioms&PhrasalVerbs.

After the completion of this Module 1 students are able to:

1. write the sentence on his/her own (L2)

2. understand the structure of the sentencesand usage(L2)

- 3. know the formation of words by using Affix(L1)
- 4. Understand the similar words and their usage in different words(L1)
- 5. enhance the knowledge of idiomatic language and its usage(L2)

MODULE -2

Grammar&Vocabulary:Cohesivedevices-linkers,signpostsandtransitionsignals-Articles – Prepositions – Gerund – Verbs: Auxiliary verbs (Primary & Modal) – Tenses – Subject Verbagreement.

Writing : Principles of writing: clarity, simplicity, brevity, single focus, organization of thoughts –sequencing the ideas – Punctuation – Question formation (Wh- questions, Yes or No questions, Tagquestions) – Letters (Formal & Informal) and Emails : Structure / template of common formal lettersandemails:inquiry/complaint/placingan order.

At the end of the Module 2, students are able to:

- 1. use the sign posts and transition signals in his/her daily life (L2)
- 2. develop the knowledge in the use of preposition and Articles. (L2)
- 3. Know the use the different types of tenses in his/her conversation.(L2)
- 4. Improve the knowledge grammar and can be able to attain the success in competitive exams (L2)
- 5. attain the idea of how to write the different types of letters which can improve his/her writing skills (L2)
- 6. possess the knowledge of writing and formation of E mails (L2)

MODULE-3

Grammar : Active and Passive Voice – Direct & Indirect Speech – Comparison of Adjectives –Causeandeffect–VerbnounCollocations&Adjective-NounCollocations.

Writing:Note Making – Summarizing –Paragraph Writing – Paraphrasing:Techniques ofparaphrasing-Replacementofwordsandphrases, change of sentences tructures.

At the end of this Module 3, students are able to:

- 1. Speak or write the sentences either in active form or in passive form.(L2).
- 2. Develop the knowledge of verbal and adjective collocations.(L2).
- 3. Know how to summarize paragraphs.(L2).
- 4. Enhance the writing skills by using the techniques of paragraph writing. (L2).

MODULE-4

Grammar : Misplaced modifiers – If Clauses – Simple, Compound, ComplexSentences – SpottingErrors.

Writing : Dialogue writing (Formal & Informal) –compareandcontrast paragraphs- Writing ofReviews:Book/ Play/Movie

At the end of the Module 4, students are able to:

- develop the writing skills by using simple compound, complex sentences.(L2) 1.
- spot the error of the writing and speaking skills.(L2) 2.
- 3. make conversations in formal and informal situations.(L2)
- 4. Write the reviews by using good writing skills.(L2)

MODULE-5

Reading Skills : Types of reading: Skimming, Scanning, Intensive & Extensive Reading -ReadingComprehension-ScrambleSentences-

Complete the passage using contextual clues I dentifying Main I deas using Scanning – Technique Identifying Specific Ideas using Skimming Technique - Studyingthe use of graphic elements texts to convey information, reveal in trends/patterns/relationships,communicateprocessesordisplaycomplicated data.

Writing:Describing-ReportWriting:definition-purpose-typesstructureformalandinformalreports-stagesindevelopingreport-proposal, progress and final reportsexamples.

After the completion of this module 5 students are able to:

- 1. gain the knowledge of different types of reading.(L2)
- attain the good writing skills by using skimming and scanning.(L2) 2.
- enhance the idea of getting the information by using pie, cycle, tree, graph, flow charts.(L2) 3.
- 4. write good reports on various incidents of her/his life.(L2)

Self-Study:

SNO	Торіс	СО	Reference
1	Grammar, vocabulary	C01	https://www.youtube.com/watch?v=nQkwdAxF4xA https://www.youtube.com/watch?v=rl85jxktfms
2	Grammar, writing	CO2	https://www.youtube.com/watch?v=XzkbcWh8s4w https://www.youtube.com/watch?v=t6eQAQE1F10
3	Grammar, writing	CO3	https://www.youtube.com/watch?v=0IFDuhdB2Hk https://www.youtube.com/watch?v=yqyZwm6QDWI
4	Grammar, writing	CO4	https://www.youtube.com/watch?v=-ouWOpo2Uh8 https://www.youtube.com/watch?v=RnTpYKOLca4
5	Grammar, writing	CO5	https://www.youtube.com/watch?v=yqyZwm6QDWI
			Total hours: 22 hours

1 TextBooks:

1. Contemporary EnglishGrammar-StructuresandCompositionbyDavidGreen,MacMillanIndia,2014. 2. EffectiveTechnicalCommunicationbyAshraf,Mrizvi,TataMcGraw-Hill,2006.

Reference Book(s):

- 1. EnglishConversationPracticebyGrantTaylor,TataMcGrawHill,2009.
- 2. PracticalEnglishUsagebyMichaelSwan,OUP,4thEdition.
- 3. TechnicalCommunicationbyMeenakshiRaman&SangeetaSharma,OxfordUniversityPre ss,2009.
- 4. EnglishVocabularyinUseAdvancedbyMichaelMcCarthy,FelicityO'Dell,Cambridg eUniversityPress,2008.
- 5. EnglishforTechnicalCommunicationforEngineeringStudents,AyshaVishwamohan, TataMcGraw-Hill2009.

Online Resources:

https://www.youtube.com/watch?v=nQkwdAxF4xA https://www.youtube.com/watch?v=rl85jxktfms https://www.youtube.com/watch?v=XzkbcWh8s4w https://www.youtube.com/watch?v=t6eQAQE1F10 https://www.youtube.com/watch?v=0IFDuhdB2Hk https://www.youtube.com/watch?v=yqyZwm6QDWI

Web Resources:

- Grammar/Listening/Writing1-language.com
- <u>http://www.5minuteenglish.com/</u>
- <u>https://www.englishpractice</u> .com/Grammar/Vocabulary
- English Language LearningOnline
- <u>http://www.bbc.co.uk/learningenglish/</u>
- <u>http://www.better-english.com/</u>
- BBC Vocabulary Games
- Free Rice Vocabulary GameReading
- https://www.usingenglish.com/comprehension/
- <u>https://www.englishclub.com/reading/short-stories.htm</u>

Online Dictionaries

- Cambridge dictionary online :<u>https://dictionary.cambridge.org/</u>
- MacMillan dictionary : <u>https://www.macmillandictionary.com/</u>
- Oxford learner's dictionaries : <u>https://www.oxfordlearnersdictionaries.com/</u>

NARAYANA ENGINEERING COLLEGE:NELLORE											
I-B.Tech	I-B.Tech CHEMISTRY LAB (COMMON TO CSE, ECE & EEE) (21CH1501) R2021										
Semester	Hours / Week Total Credit Max Marks										
	L	Т	Р	hrs	С	CIE SEE		TOTAL			
Π	0	0	3	48	1.5	40	60	100			
Pre-requisi	te: Nil										
Course Ob	jectives: T	he objectiv	ve of the la	aboratory s	sessions is	to enable t	he learners	s to get			
hands-on e	xperience of	on the prin	nciples disc	cussed in	theory sess	sions and	to understa	and the			
applications	s of these co	oncepts in e	ngineering.		-						
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	arse, the st	tudent wil	l be able to:			
CO 1	Determin	ne the cell	constant ar	nd conduct	ance of solu	utions					
CO 2	Perform	quantitativ	ve analysis	using inst	rumental r	nethods					
CO 3	Utilize th	e fundame	ntal labora	atory techni	iques for ar	nalyses sucl	h as titratio	ns, separation			
	purification	on and Spec	ctroscopy								
CO 4	Analyze	and gain e	xperiment	al skill.							

	CO-PO Mapping													
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													
CO2	3													
CO3	3													
CO4	3													
					1: Lov	w, 2-M	ledium	, 3- Hi	gh					

L:	Low,	2-Medium,	3-	High

COURSE CONTENT	СО
Task-1: Estimation of Ferrous Ion by using Potassium Dichromate	
Objective: 1. Determine the percentage of ferrous iron in an unknown sample by redox titration with potassium dichromate solution. 2. The student will pre-treat the sample to obtain the iron in the reduced (+2 oxidation) state. 3.The student will use a solution of primary standard as the titrant	CO 3
Task-2: Conductometric titration of Weak acid vs. Strong base	
Objective: 1.Perform a conduct metric titration of Weak acid with a strong base, 2. Determine the equivalence point of the titration by plotting titration curve using conductance values and amount of the base added during titration, 3. State the advantages conduct metric titrations.	CO 2
Task-3 : Conductometric titration of strong acid vs. strong base	
Objective: 1.Perform a conductometric titration of strong acid with a strong base, 2. Determine the equivalence point of the titration by plotting titration curve using conductance values and amount of the base added during titration, 3. State the advantages conduct metric titrations.	CO2
Task-4 : Determination of cell constant and conductance of solutions	
Objective: 1. To determine conductivity of the given water sample. by using conductivity meter 2. To understand the specific conductance.	CO 1

Task-5 : Potentiometry - Determination of red-ox potentials and emfs	
 Objective: 1. Determine the concentration of an unknown iron(II) solution. By using potentiometer 2. Discuss how the potential changes with relative concentration of oxidised/reduced from, 3. Perform a red-ox titration of ammonium iron (II) sulphate using potassium dichromate as oxidizing agent, 4. Determine the equivalence point of the redox titration by plotting titration curve using potential change values and amount of oxidizing agent added during titration 	CO 3
Task-6 : Determination of Strength of an acid in Pb-Acid battery	
Objective: 1. To determine the half –reactions involved in spontaneous oxidation –reduction reactions. 2. Explain the function of the lead storage and dry cell batteries …electrolysis involving two lead strips immersed in sulfuric acid.	CO 4
Task-7 : Preparation of a Bakelite	
 Objective: To prepare phenol formaldehyde resin. (Bakelite) 1. Understand the differences between linear and cross linked polymers. 2. Compare and contrast the recycling properties of linear and cross linked polymers. 3. Compare the combustion properties of various types of material. 4. Define the following terms: polymer, monomer, repeat unit, cross linking, biopolymer 	CO 4
Task-8: Determination of percentage Moisture content in a coal sample	
 Objective: 1.To provide practical knowledge for developing experimental skill in using desicator to estimate moisture content in coal 2. Understand percentage of moisture in Coal sample. 	CO4
Task-9: Determination of percentage of Iron in Cement sample by colorimetry	
Objective: 1.To use spectroscopy to relate the absorbance of a colored solution to its concentration. 2. To prepare a Beer's Law Plot to determine the concentration of an unknown.	CO 2
Task-10:Estimation of Copper by complexo metric method	
Objective: 1. Determine the percentage of Copper in an unknown sample by Complex metric titration with EDTA solution. 2. The student will pre-treat the sample to obtain the Copper in the reduced state. 3.The student will use a solution of primary standard as the titrant	CO 3
Additional Experiments:	
Task-11 : Determination of hardness of ground water sample	
Objective	

1. Determine the total hardness (total calcium and magnesium ion concentration).

2. Learn how to titrate with EDTA solution.

3.Determine permanent hardness and the temporary hardness

Task-12: pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base

CO1

CO 2

Objective:

1. To perform a pH metric titration of an acidic solution of known molarity.

2. To graph the volume of base added vs. the pH and to determine the equivalence point

3. To calculate the morality of the basic solution

Virtual Labs:

- 1. <u>http://vlab.amrita.edu/?sub=2&brch=190&sim=338&cnt=1</u>
- 2. http://vlab.amrita.edu/?sub=2&brch=190&sim=339&cnt=1

3. http://vlab.amrita.edu/?sub=2&brch=190&sim=606&cnt=1

Self-Study:

Contents to promote self-Learning:

SN	Торіс	CO	Reference
0			
1	Estimation of Ferrous Iron by Dichrometry.	CO 1	https://www.youtube.com/watch?v=LxgZsM huyNM
2	Colorometry	CO 1	https://youtu.be/efIGmPWP-X8
3	Polymer Preparation	CO 4	https://www.youtube.com/watch?v=PSSK5V GcC_0

Text Book(s):

1.A Textbook of Quantitative Analysis, Arthur J. Vogel.

2. Jain & Jain. Engineering Chemistry: Dhanapathrai Publications., 2015.

3.S.S.Dara, Experiments and Calculations in Engineering Chemistry: S-Chand Publications,

Revised

Edition, 2008.

Reference Book(s):

1. S.K. Bhasin and Sudha Rani, "Laboratory Manual on Engineering Chemistry", Dhanpat Rai Publishing Company, New Delhi, 2nd edition.

2. Sunitha Rattan, "Experiments in Applied Chemistry", S.K. Kataria & Sons, New Delhi, 2nd edition.

Web References:

- 1. https://nptel.ac.in/courses/122101001/23
- 2. https://nptel.ac.in/courses/104103071/39

NARAYANA ENGINEERING COLLEGE:NELLORE											
I-B.Tech	B.Tech ENGINEERING GRAPHICS (21ES1503) R2021										
Semester	ŀ	Hours / Wee	ek 🛛	Total	Credits	Max Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II	0 1 4 80 3 40 60 100										

Pre-Requisite: Basic Mathematics (Geometry)

Course Objectives:

- 1. To impart skills on using drawing instruments
- 2. To convey exact and complete information of any physical object.
- 3. To Construct Engineering Curves.
- 4. To Learn and practice basic AutoCAD commands.
- 5. To Instruct the utility of drafting & modelling packages in orthographic and isometric drawings

Course Out	Course Outcomes: At the end of the course, student will be able to:							
CO 1	Define the qualities of precision and accuracy in engineering drawing. (BL-1)							
CO 2	Draw engineering curves with different methods(BL-3).							
CO 3	Develop the orthographic projection of points and straight lines(BL-3)							
CO 4	Construct the planes and simple solids.(BL-3).							
CO 5	Understand and practice basic AUTOCAD commands (BL-2)							

COURSE CONTENT

	Part-A Manual Drawing								
TASK-1	Introduction and Conic sections	10 Hours							
Introduction to Engineering graphics: Principles of Engineering Graphics and their significance;									
various instruments us	ed, drawing sheet sizes and title block, lettering, BIS convent	ions, types of							
lines and dimensioning	methods.								
Geometrical construction	ons: simple constructions, construction of Pentagon, Hexagon b	y general							
Method only.									
Conic Sections:. Type	s of conics: Ellipse, Parabola and Hyperbola (Eccentricity m	ethod only),							
TASK2	Orthographic Projections	10 Hours							
Objectives and Princi	ple of projection, Methods of projections, Comparison betw	een firstangle							
and third angle project	ion.								
Projections of points:	Projection of points placed in different quadrants.								
Projection of straight	lines: Fundamental concepts, Line parallel, perpendicular an	id inclined to							
one and two reference	planes placed in first quadrant only.								
TASK-3	Projections of Solids	15 Hours							
Projections of planes and inclined to one ar Types of solids ; Pol Projections of reg Perpendicular to one pl other plane.	: Projection of planes (Triangle, Square, Pentagon, Circle) p ad two reference planes placed in first quadrant only. yhedra, Solids of revolution, gular solids (Prisms, Pyramids, Cylinders and Cone), wi ane and parallel to other plane, Axis inclined to one plane and	parallel,Perpendicular ith its axis parallel to							

TASK_4	Isometric and Orthographic views	10Hours
Isometric Projections	• Principles Isometric scale Isometric views Conventions Isome	tric views of
lines planes simple so	lids (Cube Cylinder and Cone) and Conversion of Isometric vie	and views of
Orthographic views.	nus (Cube, Cymaer, and Cone), and Conversion of Isometrie vie	///////////////////////////////////////
	Part B Computer Aided Drafting	
TASK-5	Introduction to AutoCAD	17 Hours
Basic drawing and ec	liting commands: line circle rectangle erase view undo ra	do snan object
stretching, fillets, array	rs, dimensions. Dimensioning principles and conventional representation of the second se	ntations.
TASK-6	Orthographic and Isometric Projections	18 Hours
Transformation of Is	matric Projections into orthographic projections such as sime	le solids such
ascylinder cone squar	e prism, pentagonal pyramid	he solids such
Draw 3D model of med	chanical components such as Stepped block. Bush bearing.	
	Total h	ours: 80 hours
$\mathbf{T}_{a} = \mathbf{A} \mathbf{D}_{a} = \mathbf{I}_{a} (\mathbf{x})$		
1 Phate ND "E	1	14
1. Bhall N.D. E	Engineering Drawing 2/e Pearson Education 2009	14.
3 K L Narayana	& P Kannaiah Engineering Drawing 3/e. Scitech Publishers	
3. III.Lii (uru) unu	12.	
Chennai,20		
Chennai,20 4. Engineering Dr ,Spectrum e	awing by Dr AVS Sridhar Kumar, Dr. Krishnaiah, T P Vara Prasa education, Sun techno Publications, 2019	d.
Chennai,20 4. Engineering Dr ,Spectrum e Reference Book(s):	awing by Dr AVS Sridhar Kumar, Dr. Krishnaiah, T P Vara Prasa education, Sun techno Publications, 2019	
Chennai,20 4. Engineering Dr ,Spectrum of Reference Book(s): 1. Engineering E.French, Cl	awing by Dr AVS Sridhar Kumar, Dr. Krishnaiah, T P Vara Prasa education, Sun techno Publications, 2019 Drawing and Graphic Technology -International Edition, Thomas narles J. Vierck, Robert J. Foster, McGraw-Hill, 2014	.d.

	NA	RAY	YAN	A EN	GIN	EER	ING	COI	LEO	GE:N	ELL	ORE	E	
I-B.Tec	h	Pyt	hon F	Progra	mmin	g and	Data S	Science	e Lab	(21ES	1508)		R2	021
Semeste	r	Ho	ours / V	Neek		Т	otal	Cred	it		Μ	ax Ma	ırks	
	I		Т		Р	h	nrs	C		CIE	;	SEE	TO	ГAL
II	0)	0		3	4	48	1.5	5	40		60	1	00
Pre-req	uisite: F	Program	mming	g Knov	vledge									
Course	Objectiv	ves:												
1. To	gain knov	vledge	on pyt	hon pi	ogram	basics	5							
2. To	o prepare	studen	ts for l	ouildin	g prog	grams	using	control	staten	nents				
3.	То р	repare	studen	ts for	solving	g the p	roblem	ns invol	lving f	unctio	ns and	files.		
4.	To g	gain kr	nowled	ge Py	thon N	lumpy	modu	ile to s	solve	comple	ex ma	themat	ical pro	blems
inv	olving ma	trices.												
5.	To g	ain Kn	owled	ge of d	ata cle	aning	using l	Pandas	•					
Course Outcomes: After successful completion of the course, the student will be able to:														
CO1	Und	erstan	ding a	nd us	e of py	thon-	Basic	c Conc	epts(]	BL -2)				
CO2	Solv	ve the	proble	ems us	ing p	ython	Iterat	ive Sta	atemer	nts(BI	3)			
CO3	Und	erstan	d the	conce	ots of	files,	modul	es(BL	2)					
CO4	Solv	ve the	Nume	rical	proble	ms th	at invo	olve M	Intrice	s (BL	(-3)			
<u> </u>	Dros	rido ac	hution	for for		oonin	a tool		2)		0)			
05	FION	lue sc	Jution	15 101 0			g task	<u>s(DL</u>	5)					
					C	<u>20-PC</u>) Map	ping					DC	
CO	DO1	DO	DO	DO	DO			DO	DO	DO	DO	DO	PSO	
CO	POI	PU 2	PU 2		PO 5	PO 4	PO 7	PO	PO	PO 10	PO 11	PO 12	PSU 1	PS0 2
CO1	1	<u>2</u> 1	3	4	3	0	/	0	9	10	11	12	1	2
$\frac{CO1}{CO2}$	1	2	2	2									1	1
C02	2	2 2	2	2	2								2	1
C03	2	$\frac{2}{2}$	2 2	<u> </u>	<u> </u>								3	2
C04	L	2	2	1			adium	2 LI;	ah				5	2
					1-L01	v, 2-1vi		, <u>J- III</u>	gn					~~~
					COU	RSE (CONT	ENT						CO
				Tas	<u>sk-1 - 1</u>	Pytho	n Bas	ics (4 1	(H)	~ .				
1. Ru	nning ins	structi	ons in	Intera	active	interp	reter a	and a F	Pythor Pythor	n Scrip	ot			
2. W1	rite a pro	gram t	to pur	posefu	lly rai	se Inc	lentati	ion Eri	for an	d Corr	ect it			CO
3. W1	rite a pro	gram t	to con	pute o	listanc	e bet	ween	two po	oints ta	aking	input	from t	he user	
(Pr	ythagore	an The	eorem)				-		-	-			
4. W1	ite a pro	gram	to cor	vert a	Bina	v nur	nber t	o Deci	imal r	umbe	r and	verifv	if it is	a
Per	fect nun	her				J						· j		
	1000 11011		Тғ	sk-2 -	Conc	litiona	al Stat	tement	ts (2 H	[)				
1. Wr	rite a pro	gram	to dete	ermine	if a g	iven s	tring	is a Pa	lindro	me or	not			
2. W	rite a pr	ogram	for F	Fibona	cci se	auenc	e is e	enerat	ed by	addii	ng the	e prev	ious two	
ter	ms hv st	artino	with 1	and '	2 the	first 1	0 tern	ns will	be 1	2 3	5 8	13 21	34 55	š
80	1115 Uy 50	urting	WILLI I	ana	2, 110	inst i	0 1011		00.1	, 2, 3,	5, 0,	13, 21	I, J T , JI	' ,
	,			т	V SK-3	R - Fur	oction	с (2 H	<u>, </u>					
1 W	···	-4:	1	1	D	- ru		5 (2 H))					
1. W1	ite a fun	ction 1	that dr	aws a	Pyran	nid wi	th # s	ymbol	S					~ ~ ~
						-#								
						# #	#							
					#	##	##							
					# #	##	+ # #							
2. Ch	noose ang	y five	built-	in str	ing fu	nctior	ns of	C lang	guage.	Impl	ement	them	on you	ır
ow	n in Pytł	10n. Y	ou sho	ould n	ot use	string	g relate	ed Pytl	hon bi	uilt-in	funct	ions.		
	-				TASK	-4 -S	trings	(4H)						

ADDITIONAL EXPERIMENTS				
2. Write a Pandas program to replace NaNs with a single constant value in specified				
have at least one missing value.				
1. Write a Pandas program to identify the column(s) of a given DataFrame which	$CO\overline{5}$			
TASK-10 - Introduction to Pandas (4 H)				
replace everything else as 'Other' in the series				
2. Write a Pandas program to display most frequent value in a given series and				
type.	CO 5			
1. Write a Pandas program to convert a Panda module Series to Python list and it's				
[3 3] TASK-9 - Introduction to Pandas (4 H)				
Difference between the maximum and the minimum values of the said array:				
[67891011]]				
[[0 1 2 3 4 5]				
Original array:				
Expected Output:	CO 4			
the minimum values of a given array along the second axis				
1 ASK-0 - Introduction to Numpy (2H)				
TASK 9. Introduction to Nummer (21)				
 write a NumPy program to compute the outer product of two given vectors. Write a Numpy program to compute the determinant of a given square array 	CO 4			
IASK-7 Introduction to Numpy (4 H)				
b. Merge two files				
a. Copy from one file to another file				
 Write a program to perform the following operations in Files: 	003			
1. Write a program to read the file content and count the number of vowels, consonants, digits and special characters in a given file.	CO2			
TASK-6 - Files (4H)				
i) Finding common elements in the list				
h) Finding biggest and smallest elements in the list				
g) Sorting of list				
f) Push and pop element of list				
d) Insert into the list				
c) Check for member in the list				
b) Concatenation of list's				
a) Updating elements of a list	CO 2			
1. Write program which performs the following operations on lists. Don't use built-in functions				
TASK-5 - Lists (2H)				
2. Write a program using map, filter and reduce functions				
Dictionary data structure.				
1. Write a program to use split and join methods in the string and trace a birthday with				

TASK – 11 – Lists, Strings, Tuples

1. Write a python programs on lists

2. Write a python program on strings

3.	Write a	python	program	on	tuples
----	---------	--------	---------	----	--------

TASK – 12 - Pandas

- 1. Write a Pandas program to interpolate the missing values using the Linear Interpolation method in a given DataFrame.
- 2. Write a Pandas program to import excel data (coalpublic2013.xlsx) into a Pandas DataFrame.

Virtual Labs

CO5

Python Lab (IIT Bombay) :					
1	1	1			

1. <u>http://vlabs.iitb.ac.in/vlabs-dev/labs/python-basics/experimentlist.html</u>

2. <u>https://pythoninstitute.org/free-python-courses/?gclid=EAIaIQobChMI4u7Uw-</u>				
mZ8wIVTR0rCh0CYw2FEAAYAiAAEgL5GPD_BwE				
List of Experiments				
1. Arithmetic Operations	6. Classes and Objects			
2. Built-in Functions	7. Built-in Modules			
3. Loops	8. Constructors and Inheritance			
4. Data Types	9. Numpy basics.			
5. Strings	10. Pandas			

Text Book(s):

- 1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson, 2017
- 2. Learning Python, Mark Lutz, Orielly, 5th Edition, 2013

Reference Book(s):

- 1. Think Python, Allen Downey, Green Tea Press, 2nd Edition
- 2. Core Python Programming, W.Chun, Pearson, 2nd Edition, 2007
- 3. Fundamentals of Python, Kenneth A. Lambert, Cengage Learning, 1st Edition, 2015
- 4. R. Nageswara Rao, "Core Python Programming", 2nd edition, Dreamtech Press, 2019
- 5. Allen B. Downey, "Think Python", 2ndEdition, SPD/O'Reilly, 2016
- 6. Martin C.Brown, "The Complete Reference: Python", McGraw-Hill, 2018.
- 7. Michael Dawson, —Python Programming for absolute beginners, 3rd Edition, CENGAGE Learning Publications, 2018.
- 8. Taming Python by Programming, Jeeva Jose, Khanna Publishing House, 1st Edition, 2018
- 9. Introduction to Computing and Problem Solving with Python, J. Jose, Khanna Publications, 1st Edition, 2019.
- 10. Guido Van Rossum and Fred L. Drake Jr, "An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.

Web References:

- 1. https://www.tutorialspoint.com/python/index.htm
- 2. https://www.w3schools.com/python/
- 3. https://www.javatpoint.com/python-tutorial
- 4. https://www.geeksforgeeks.org/python-programming-language/
| NARAYANA ENGINEERING COLLEGE:NELLORE | | | | | | | | | | | | | |
|--|--|--|--------------------------------|-------------------------------|----------------------------|---------------------|------------------------|-------------------------------|--|--|--|--|--|
| I-B.Tech | | E | nglish Lan | guage Lab | (21EN150 | 1) | | R2021 | | | | | |
| Semester | Н | lours / Wee | ek | Total | Credit | | Max Mar | rks | | | | | |
| | L | Т | Р | hrs | С | CIE | SEE | TOTAL | | | | | |
| II | 0 | 0 | 3 | 48 | 1.5 | 40 | 60 | 100 | | | | | |
| Course Outcomes: After successful completion of the course, the student will be able to: | | | | | | | | | | | | | |
| COI | Understand how speech sounds are used to create meaning. Apply their knowledge of English phonetics and phonology to improve their own pronunciation. | | | | | | | | | | | | |
| CO2 | Recogn
groups
audience | <mark>ize and u</mark>
and Spea
e. | se pitch j
k confide | patterns t
ntly and | o signal c
intelligibly | omplete a
within | nd incomp
groups an | plete thought
ad before an | | | | | |
| CO3 | Learn, practice and acquire the skills necessary to deliver effective, presentation with clarity and enable them to prepare resume with cover letter. | | | | | | | | | | | | |
| | · | | | CO-PO I | Mapping | | | | | | | | |

CO		PO													
CO	РО	РО	PO	PSO1	PSO2										
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1									2	3					
CO2									3	2					
CO3									3	3					
1: Low, 2-Medium, 3- High															

TASK - 1

Introduction to Phonetics: Introduction to Sounds of Speech - Vowels - Consonants.

Practice-1: Listening Sounds of Speech – Vowels – Consonants with a focus on pronunciation **Practice-2:** Highlighting the sounds of Vowels and Consonants

TASK - 2

Syllabification: Word Stress, Rules of word stress

Practice-3: Practice on Intonation and Stress

TASK - 3

Listening Skills: Types of Listening Skills- Active listening and anticipating the speaker

Practice-4: Listening for Specific & General Details

Practice-5: Listening Comprehension

TASK – 4

Defining & Describing: Objects, Places and Events - Video Speech Writing- Review (Oral) (Books / Movies / Products..etc.,)

Practice-6: Describing: Objects and Places

Practice-7: Describing: Events and Process

Practice-8: Review (Oral) : Books / Movies / Products..etc.,

Practice-9: Video Speech Writing

TASK - 5

Reading Comprehension- Information Transfer.

Practice-10: Reading practice for practice of Pronunciation – understanding;

Practice-11: writing paragraph- graphs, flow charts, diagrams - Information Transfer

TASK – 6

Giving and Asking Directions - Poster Presentation

Practice-12: Giving and Asking Directions

	NARAYANA ENGINEERING COLLEGE: NELLORE												
II-B. Tech	PROI	BABILITY	STATIST	TICS AND	NUMERI	CAL MET	HODS	R-2021					
Semester	H	Hours / Wee	ж	Total	Credit		Max Ma	rks					
Ι	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
20MA1006	3	0	0	48	3	40	60	100					
Pre-requisi	te: inter	mathematio	CS										
Course Obj	ectives: T	This course	e aims to p	roviding t	he knowled	dge for the	e student al	bout on					
 The anal The To s meth To i To e To s 	theory of ysis the d Statistica olving an nods. nterpolati evaluation solve ordin	Probabilit ata. I methods algebraic a ng the valu of integra nary differ	y Distribu used to tes nd transcer ues throug l values th ential equi	tions is us st the prod ndental equ h the poly arough the ations thro	ed to Dete uct under ations by a nomials. numerical ugh the nu	rmine the the specifi applying V methods. merical m	expected v cations or arious num nethods.	values and not. merical					
Course Out	comes: A	fter succes	sful compl	etion of th	e course, th	e student	will able to	:					
CO 1	Apply the	e probabilit	y distributi	ons in life t	esting, exp	ected failur	es for vario	us engineering					
~~~	application	ons.						(L-3)					
CO 2	Test the o	data by app	lying large	samples in	ferential tec	hniques.		(L-4)					
CO 3	Test the o	data by app	lying small	samples in	ferential te	chniques.		(L-4)					
CO 4	<b>CO 4</b> solve algebraic and transcendental equations and interpolate the trend value (L-3)												
CO 5	To Solve	ordinary d	ifferential of	equations b	y using nun	nerical met	hods	(L-3)					

	CO-PO Mapping													
		РО												
CO	<b>PO1</b>	PO	PSO	PSO										
		2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3				2								
CO2	3	3	2			2								
CO3	3	3				2								
CO4	3	3	2											
CO5	3	3				2								
1- Low, 2-Medium, 3- High														

	COURSE CONTENT	
MODULE – 1	Random Variables and Probability Distributions	Hours:10
Basics concepts	of Probability, Random variables, Expectation-Discrete	and continuous
Distributions, Dis	tribution function. Binomial, Poisson, Normal and Exponent	ntial distribution-
Related properties	s (without proof).	
At the end of the Mo	dule 1, students will be able to:	
5. Apply the pr	obability basic concepts to predict some information.	(L-3)
6. Acquire the	knowledge about classification of the variables	
(L-3)	-	
7. To find the e	xpected and variance values.	(L-1)
8. Apply an ap	propriate probability distribution to the given data.	(L-3)
9. find expected	d mean life time of the product by using normal distribution.	(L-1)
MODULE -2	Large Sample Tests	Hours:10

Population and Sample - Null and Alternative hypothesis - Level of signif	ïcance,	Errors of
sampling, Critical region, one tailed and two tailed tests, Procedure for testi	ng of h	ypothesis,
large sample tests for single mean, two means and single proportion,	two pr	oportions,
Confidence interval for mean and proportions.		
At the end of the Module 2, students will be able to:		
1. Apply the testing of hypothesis techniques, to decide the product is good or bar	1.	(L-3)
2. How much of sample size is required for testing		(L-1)
3. Determine the control limits for the product.		(L-3)
4. Select appropriate test statistic to analysis the data.		(L-3)
MODULE-3 Small Sample Tests	H	ours:8
t-test for single mean difference of two means and paired t-test. F-test and C	hi-sanaı	e test one
sample variance test, testing of goodness of fit and independence of attributes	in squu	e test one
sumpre variance test, testing of goodness of in and independence of attributes.		
At the end of the Module 3, students will be able to:		
5. Determine the product came from same company or not.		(L-3)
6. Applying t-test techniques, to determine the experimentation useful or not		(L-3)
7. Use the chi-square test techniques to select the appropriate distribution		(L-3)
8. Applying the chi-square test to test whether the attributes are independent or no	ot	(L-3)
MODULE-4 Solution of Algebraic, Transcendental Equations &	Ho	urs:10
Interpolation		
Introduction-Bisection method, Regula-falsi method, Newton Raphson	metho	d, Finite
differences-Newton's forward and backward interpolation formulae - Lagrang	e's form	nulae.
At the end of the Module 4, students will be able to:		
1. Solve an algebraic or transcendental equation using an appropriate numerical n	nethod.	(L-3)
2. Understand the use of different operators in interpolation.		(L-2)
3. Find interpolating polynomials using Newton's forward and backward formula	e.	(L-2)
4. Understand the theoretical and practical aspects, the use of numerical methods.		(L-2)
Numerical integration & Colution of andinawy differential		
MODULE-5 Rumerical integration & Solution of ordinary differential	Ho	urs:10
Numerical Integration: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/	8 Rule 1	Numerical
solution of Ordinary Differential equations: Solution by Taylor's series-Pie	card's N	Aethod of
successive Approximations-Modified Euler's Method- Runge-Kutta Method.		
At the end of the Module 5, students will be able to:		
5 Apply approximately differentiation and intermetion to have to various an eigene		(I 2)
5. Apply numerical differentiation and integration techniques to various engineer.	3/8 Rul	e and its
applications	5/6 Kui	(L-2)
7. Work out numerical differentiation whenever and wherever routine methods ar	e not	(L-1)
8. Apply Runge-kutta method in engineering problems		(L-3)
Total	hours	48

- Analysis variance.
   lognormal distribution.
- regression analysis . 5.

Self-Stu	ıdy:		
Content	s to promote self-Learning:		
SNO	Торіс	CO	Reference
1	Probability distribution	CO1	https://www.youtube.com/watch?v=6x1pL9Yov1k
2	Large sample tests	CO2	https://www.youtube.com/watch?v=80YzzIm8NK8
3	Small sample tests	CO3	https://www.youtube.com/watch?v=c5YTyGWpcmw
4	Solution of Algebraic and Transcendental Equations	CO4	https://www.youtube.com/watch?v=apuEXUAntJo
5	Numerical Integration and solution of Ordinary differential equations	CO5	https://www.youtube.com/watch?v=0rtaUUonwkU https://www.youtube.com/watch?v=QugqSa3Gl-w

#### Text Book(s):

- 3. Iyengar T.K.V., Krishna Gandhi B. & Others., (2013), Numerical Methods, Second Revised Edition, New Delhi, S.Chand & Co.Ltd.
- 4. Miller and Freund's, Probability and Statistics for Engineers, 8/e, Pearson, 2016.
- 5. 3. S.S. SASTRY, Introductory Methods of Numerical Analysis, 5/e, PHI learning private limited, 2012.
- 6. B S Grewal, Higher Engineering Mathematics, 44th Edition, New Delhi, Khanna Publications, 2017.

#### **Reference Book(s):**

- 4. S. Ross, a First Course in Probability, Pearson Education India, 10th editon, 2018.
- 5. Fundamentals of Mathematical Statistics" SC Gupta and V K Kapoor ,2016.
- 6. W. Feller, An Introduction to Probability Theory and its Applications, Wiley, 2019.

#### Online Resources/ Web References:

- 7. <u>https://www.vfu.bg/en/e-Learning/Math_Soong_Fundamentals_of_probability and</u> <u>statistics for engineers.pdf</u>
- 8. http://www.math.ust.hk/~machas/numerical-methods.pdf
- 9. https://www.khanacademy.org/math/statistics-probability
- 10. http://www.randomservices.org/random/dist/index.html
- 11. https://global.oup.com/uk/orc/biosciences/maths/reed/01student/numerical_tutorials/pdf

	NARAYANA ENGINEERING COLLEGE::NELLORE												
II-B.Tech	II-B.Tech DATA STRUCTURES AND ALGORITHMS (21ES1009) R2021												
Semester	Ho	Max Mar	ks										
	L T P			С	CIE	SEE	TOTAL						
Ι	3	0	0	48	3	40	60	100					

	COURSE CONTENT											
MODULE – 1	Introduction to Data Structures	9H										
Introduction: Overview	of Data Structures, Implementation of Data Structures	ures, Algorithm										
Specifications, Analysis of	of an Algorithm, Asymptotic Notations, Time-Space tra	ade off, Arrays.										
<b>Searching:</b> Introduction, E complexities.	Searching: Introduction, Basic Terminology, Linear Search and Binary Search Techniques and their complexities.											
MODULE – 2	Stacks and Queues	9H										
Stacks: Introduction, Repr	resentation of a Stack, Stack Operations, Applications of	Stacks. Queues:										
Introduction, Representation	on of a Queue, Queue Operations, Various Queue Stru	ctures: Circular										
Queue, Double Ended Que	Queue, Double Ended Queue, Priority Queue, Applications of Queues.											
MODULE – 3	3 Linked Lists and Sorting											
Introduction, Singly linked lists, Doubly Linked Lists, Circular Linked Lists, Linked Stacks and												
Queues, Applications of Li	inked Lists. Sorting: Introduction, Bubble Sort, Selection	Sort, Insertion										
Sort, Merge Sort, Quick So	ort											
MODULE – 4	Trees	10H										
Introduction, Basic Term	ninologies, Definition and concepts, Representation of	of Binary Tree,										
operations on a Binary Tr	ee, Binary Search Tree, Height balanced Binary Tree, F	B Trees.										
MODULE – 5	Graphs & Hashing	10H										
Graphs: Introduction, Grap	ph Terminologies, Representation of Graphs, Graph Ope	rations, Shortest										
Paths, Topological Sorting	, Minimum Spanning Trees - Kruskal's and Prim's algor	rithms. Hashing:										
Introduction to Hash Table	e, Static Hashing, Dynamic Hashing.	1										
	Total hours:	48 hours										

#### **TEXTBOOK:**

- D. Samanta, Classic Data Structures, 2nd Edition, Prentice-Hall of India, Pvt. Ltd., India, 2012.
- 2. Ellis Horowitz and Sartaj Sahni, **Fundamentals of Data Structures in C**, 2nd Edition, Universities Press, 2008.

## **REFERENCES:**

- 1. Data Structures A Pseudo code Approach with C, Second Edition by Richard F. Gilberg, Behrouz A. Forouzan, Cengage Learning.
- 2. Data Structures and Algorithms Using C++ by Ananda Rao Akepogu, Radhika Raju Palagiri, Pearson, 2010.
- 3. Data Structures and Algorithms Made Easy by Narasimha Karumanchi, Careermonk Publications, 2016
- 4. Peter Bras, "Advanced Data Structures", Cambridge University Press, 2014
- 5. Data Structures, RS Salaria, Khanna Publishing House, 3rd Edition, 2017
- 6. Data Structures through C, Yashwant Kanetkar, BPB Publications, 3rd Edition, 2019
- 7. Expert Data Structures with C, RB Patel, Khanna Publications, 2019

# NARAYANA ENGNEERING COLLEGE::NELLORE

## **ELECTRONIC DEVICES AND CIRCUITS (21ES1010)**

#### MODULE-1

#### SEMICONDUCTOR DIODES

Semiconductor diode: Principle and structure of PN junction diode, Open circuited PN junction diode, Energy band diagram of PN diode, Diode current equation, Volt-Ampere characteristics, Temperature dependence of Volt-Ampere characteristics, Diode capacitance. Special semiconductor devices: Principle of operation and characteristics of Varactor diode, Tunnel diode, Photo diode, LED, SCR.

MODULE-2

#### **RECTIFIERS & FILTERS**

10h

10h

Diode applications: P-N junction diode as a rectifier - Half wave rectifier, Full wave rectifier, Bridge rectifier, Rectifier parameters, Harmonic components in rectifier circuits, Clippers and clampers (Qualitative Treatment only) filters: Inductor filters, Capacitor filters, L- section filters,  $\pi$ - section filters, Bleeder resistor.

## MODULE-3

#### **BIPOLAR JUNCTION TRANSISTOR**

9h

Bipolar junction transistor: Construction, Principle of operation, Transistor current components, Transistor configurations, Transistor h-parameter model, Calculation of h-parameters from characteristics, Transistor as a switch, TRansistor as an amplifier.

MODULE-4

TRANSISTOR BIASING

10h

Transistor Biasing: Need for biasing, Operating point, Load line analysis, Stabilization against variations in  $I_{CO}$ ,  $V_{BE}$  and  $\beta$ , Biasing and stabilization techniques: Fixed bias, Collector to base bias, Voltage divider bias, Bias compensation techniques, Thermal runaway, Heat sink and thermal

stability.

## MODULE-5 METAL OXIDE SEMICONDUCTOR FIELD-EFFECT TRANSISTOR

MOSFET: Construction of depletion mode and enhancement mode of NMOS and PMOS, Drain characteristics of MOSFET, Transfer characteristics of MOSFET, MOSFET as a switch, CMOS inverter and it's characteristics.

9h

## **Text Book(s):**

- 1. J. Milliman and C Halkias, "Integrated electronics", 2nd edition, Tata McGraw Hill, 1991.
- Donald A Neamen, "Electronic Circuits analysis and design", 3rd edition, McGraw Hill (India), 2019.

## **Reference Book(s):**

1. Behzad Razavi, "Microelectronics", Second edition, Wiley, 2013.

 R. L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits," 9th Edition, Pearson, 2006.

	NA	RAY	YAN	A EN	GIN	EER	ING	COI	LEO	GE:N	ELL	ORE	1	
II-B.Tech			DC N	1ACHIN	NES AN	D TRA	NSFO	RMERS	5 (21EE	E <b>2001</b> )			R202	l
Semester		Ho	ours / V	Veek		Т	otal	Credi	t		Μ	lax Ma	rks	
	L		Т		Р	h	irs	C		CIE	5	SEE	TO	ΓAL
Ι	3		0		0	2	18	3		40		60	1	00
Pre-requisi	te: Ni													
Course Obj	ective	s:												
1. To	under	stand	the c	onstru	ctiona	l feati	ares of	f DC r	nachii	nes.				
2. To	under	stand	the p	henon	nena o	f arma	ature 1	reactio	n and	comn	nutatio	on.		
3. To	under	stand	the cl	haract	eristic	s and	parall	el ope	ration	of dc	mach	ines.		
4. To	under	rstand	the 1	metho	ds for	speed	d cont	rol of	DC 1	notors	and	applic	ations of	of DC
motors.														
5. To understand the various types of losses that occurs in DC machines and how to												ow to		
cale	culate	effici	ency.											
6. To	under	stand	the c	onstru	ctiona	l feati	ares of	f a sing	gle ph	ase tra	nsfor	mer.		
7. To	under	stand	the ef	ficienc	ey and	volta	ge reg	gulatio	n of a	transf	ormer	•		
8. To	under	stand	the A	Autotr	ansfor	mers	Const	ructio	n & (	Compa	arison	with	two wi	inding
trar	sform	ner.												
9. To	sugge	st a si	uitable	three	phase	trans	forme	r conn	ection	n for a	partic	ular o	peration	1.
10. To	unders	stand	the tap	p chan	ging c	of tran	sform	ers.						
Course Out	come	<b>s</b> : Afte	er succ	essful	comp	letion	ofth	e cours	se, the	e stude	ent wil	l be ab	le to:	
CO 1	Stud	y con	structi	on, di	fferent	phen	omen	a like:	arma	ture re	actior	n, com	mutatio	n in
	DC r	nachi	nes.											
CO 2	Unde	erstan	d abou	ıt diffe	erent t	ypes o	of dc g	genera	tors a	nd sigi	nificar	nce of	OCC.	
CO 3	Deve	elop n	nathen	natical	relati	ons fo	or torq	ue dev	velope	ed by d	lc mot	or and	l learn a	bout
	speed	d – to	rque c	haract	eristic	s of d	iffere	nt type	es of I	DC mo	tor. (	Gain k	nowledg	ge of
	abou	t diffe	erent t	esting	metho	ods of	dc ma	achine	s.					-
CO 4	Ident	tificat	ion of	physic	cal con	poner	nts of s	single	phase	transf	ormer	•		
CO 5	Lear	n diff	erence	betw	een tw	o win	dings	and a	uto tra	nsfor	ners.			
	Ident	tificat	ion of	three	phase	transf	forme	rs circ	uits.					
					<u>r</u>	:O-PO	Map	ning						
СО						P	0						PS	0
	РО	РО	PO	РО	РО	PO	PO	PO	РО	PO	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	2		2				1	1	2	2	1
CO2	2	2	2	2		2				1	1	2	1	2
CO3	2	2	2	2		2				1	1	2	2	1
CO4	2	3	3	2		2				1	1	2	2	1
CO5	3	3	3	3		2				1	1	2	1	2
1: Low, 2-Medium, 3- High														

## **COURSE CONTENT**

#### MODULE – 1

Principle of Electromechanical Energy Conversion, Energy balance equation, Introduction to DC Generator, principle of operation, Construction details, Design of Armature winding, E.M.F Equation- Numerical problems. Armature Reaction- Cross Magnetizing and De-Magnetizing AT/Pole, Compensating Winding, Commutation, Reactance Voltage, Methods of Improving Commutation.

At the end of the Module 1, students will be able to:

- Able to understand the electromechanical energy conversion system
- Able to understand the construction, operation and armature windings of a DC generator
- Able to understand the Armature Reaction & Commutation

#### MODULE -2

Methods of Excitation – Separately Excited and Self Excited Generators, Build-Up of E.M.F -Critical Field Resistance and Critical Speed, Causes for Failure to Self Excite and Remedial Measures, Characteristics & Applications of Generators.

Parallel Operation of D.C shunt Generators, Series Generators-Use of Equalizer Bar and Cross Connection of Field Windings – Load Sharing.

At the end of the Module 2, students will be able to:

- Able to analyze the types of DC generators
- Able to analyze the characteristics of DC generators
- Able to understand the Parallel of operation of DC generators

## **MODULE-3**

D.C Motor – Principle of Operation, Back Emf, Torque and power developed by armature, Types, Characteristics and Applications of dc Motors, speed control of DC motors(Armature control and Flux control methods), Necessity of starters, constructional details of 3-point and 4-point starters, Calculation of Starter Steps for D.C Shunt Motors.

Power stages in a dc machine, Losses – Constant & Variable Losses, Calculation of Efficiency, Condition for Maximum Efficiency & Numerical Problems. Methods of Testing - Brake Test, Swinburne's Test, Hopkinson's Test, Field's Test, Retardation Test.

At the end of the Module 3, students will be able to:

- Analyze the types of DC motors
- Analyze the characteristics & speed control of DC motors.
- Able to understand the calculation of starter resistance in steps.
- Analyze Power stages and types of losses in a DC machines.
- Able to understand the calculation of Efficiency in DC machines.
- Able to Analyze the testing of DC machines.

## **MODULE-4**

Principle, construction and operation of single-phase transformers, EMF equation, equivalent circuit, phasor diagrams(no load and on load), losses and efficiency, voltage regulation, All Day Efficiency, Testing -open circuit, short circuit tests & Sumpner's test, separation of hysteresis and eddy current losses. Parallel operation of single-phase transformers.

At the end of the Module 5, students will be able to:

- Able to understand the construction & operation of transformer
- To predetermine the efficiency and voltage regulation of a transformer
- Able to understand the parallel operation of single phase transformers.

## MODULE-5

Autotransformers-construction, principle, applications and comparison with two winding transformer. Three-phase transformer – construction, types of connection and their comparative features, Phase conversion - Scott connection, Tap-changing transformers - No-load and on-load tap changing of transformers.

At the end of the Module 6, students will be able to:

- Able to understand the Autotransformers
- Able to understand and analyze the phase conversions
- Analyze the tap changing of transformers

Total hours: 60 hours

#### Term work:

DC Machines- Lab & Transformers- Filed Work

#### **Content beyond syllabus:**

1. Advanced Speed control techniques for DC Motors.

2. Zigzag/star and V/V connections in a 3-Phase Transformers

#### Self-Study:

## Contents to promote self-Learning:

	SNO	Торіс	СО	Reference
Ī	1	DC Machines		
		Introduction &	CO1	https://nptel.ac.in/courses/108/102/108102146/
		Constructional features		
	2	DC Generator	<u> </u>	https://www.youtube.com/watch?y=TaZiy.sy.jo
		Characteristics	002	https://www.youtube.com/watch:v=1a2jv_sy_jo
	3	DC Motor	CO3	https://www.youtube.com/watch?v=GQatiB-JHdI
	4	Testing of DC Machines	CO4	https://www.youtube.com/watch?v=8WCbTZPjcTE
	5	Transformers	CO5	https://nptel.ac.in/courses/108/105/108105155/
	6	Auto Transformers	CO6	https://www.youtube.com/watch?v=lltVwhoPvh0

#### Text Book(s):

1. Electrical Machinery, P.S. Bimbhra, Khanna Publishers, 7th Edition, 2011.

2. Electrical Machines, S K Bhattacharya, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2014, 3rd Reprint 2015.

3. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

#### **Reference Book(s):**

1..Electric Machines 4th edition, D.P.Kothari and I.J. Nagrath, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2010, 16th Reprint 2015.

2.A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.

3. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

#### **Online Resources:**

1. http://175.101.102.82/moodle/

2. https://www.accessengineeringlibrary.com/

3. https://www.slideshare.net/

4. <u>https://easyengineering.net/electrical-machinery-by-bimbhra/</u>

5.https://books.google.co.in/books?id=dh_gDwAAQBAJ&lpg=PR1&dq=electrical%20machines%20by%20 kothari%202020&pg=PR8#v=onepage&q&f=false

#### Web Resources:

1. https://electrical-engineering-portal.com/

2. https://www.electrical4u.com/

3. <u>http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/Sadhya/experimentlist.html</u>

4. <u>https://www.engineering.com/</u>

	NARAYANA ENGINEERING COLLEGE:NELLORE																
II-B.Tech			E	ectric	al Cir	cuit A	Analy	sis (21	EE2	002)	2) R2021						
Semester		Но	ours / V	Veek		Т	otal	Credi	t		Μ	lax Ma	rks				
	L		Т		Р	ł	nrs	C		CIE		SEE	TO	TAL			
Ι	3	3	0		0	4	48	3		40		60	1	00			
Pre-requis	ite: N	Nil															
Course Ob	ojectiv	ves:															
1. To know	the an	alysis	of thre	e phas	e balar	nced an	nd unb	alance	d circ	uits and	l to me	asure a	active ar	nd			
reactive pow	wers in	n three	phase	circuit	s.												
2. Knowing	g how	to dete	ermine	the tra	insient	respor	nse of	R-L, R	-C, R	-L-C se	ries ci	rcuits f	for D.C	and			
A.C excitations.																	
3. To introduce the various two-port networks parameters for a given circuit.																	
4. To evalua	4. To evaluation of poles and zeros of a given transfer function.																
5. To study the different types of filters																	
Course Outcomes: After successful completion of the course, the student will be able to:																	
CO 1	Unde	erstan	d the a	nalysis	s of thr	ee pha	ase bal	anced	and u	ınbalan	ced cir	cuits.					
CO 2	Solve	e the p	roblen	ns in D	C trans	sient r	espons	se for t	he giv	/en circ	uit.						
CO 3	Solv	e the p	roblen	ns in A	C tran	sient r	espons	e for th	ne giv	en circu	ıit.						
CO 4	Anal	yze the	e given	netwo	ork usi	ng diff	erent	two po	rt net	work p	arame	ters.					
CO 5	Expl	ain ab	out the	funda	mental	and ty	pes of	filters									
	Ŷ				С	O-PC	) Map	ping									
СО					_	Р	0	1 0					PS	<b>50</b>			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2			
C01	3	3	3	2									3	3			
CO2	3	3	3	2									3	3			
CO3	3	3	3	2									3	2			
CO4	3	3	3	2									1	2			
CO5	2	2	3	2									2	1			
					1: Lov	<i>x</i> , 2-M	ledium	1, 3- Hi	gh								

## COURSE CONTENT

## MODULE – 1

## Balanced Three phase circuits

Three phase circuits: Phase sequence- Star and delta connection-Relation between line and phase voltages and currents in balanced systems-Analysis of balanced three phase circuits-Measurement of Active and Reactive power in balanced Three phase systems.

#### Unbalanced Three phase circuits

Analysis of Three Phase unbalanced circuits-Loop Method- Application of Millman's Theorem-Star Delta Transformation Technique – Two Wattmeter Method of measurement of three phase power, Advantages of Three Phase System.

At the end of the Module 1, students will be able to:

- 1. Explain about advantages of  $3-\phi$  circuits over  $1-\phi$  circuits
- 2. Distinguish between balanced and unbalanced circuits
- 3. Explain the phasor relationships of voltage, current, power in star and delta connected.
- 4. Measure the active, reactive powers in balanced circuits
- 5. Understand the analysis of unbalanced circuits and power calculations

#### **MODULE-2**

#### Transient Analysis

Transient Analysis in DC and AC circuits Transient response of R-L, R-C, R-L-C circuits for DC excitations, Solution using differential equations and Laplace transforms.

At the end of the Module 2, students will be able to:

- 1. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in DC excitations
- 2. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in sinusoidal excitations

#### **MODULE-3**

Transient Analysis in DC and AC circuits Transient response of R-L, R-C, R-L-C circuits for AC excitations, Solution using differential equations and Laplace transforms.

At the end of the Module 3, students will be able to:

- 9. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in AC excitations
- 10. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in sinusoidal excitations

#### MODULE-4

Two Port Network Parameters: Impedance, Admittance, Transmission and Hybrid Parameters and their relations, reciprocity and symmetry conditions, concept of transformed network, Two Port Network parameters using Transformed Variables

At the end of the Module 4, students will be able to:

- 1. Understand the concept of two port network theory
- 2. Find the transmission line networks for designing the transmission lines.

#### **MODULE-5**

#### Filters

Filters – Low Pass – High Pass and Band Pass – RC, RL filters– derived filters and composite filters

design – Attenuators – Network functions for one port and two port networks, pole-zeros of network functions and network stability.

At the end of the Module 5, students will be able to:

- 1. Understand about Filter, Classification, where they can be used, etc.
- 2. Understand about attenuators and equalizers used in electronic high frequency circuits
- 3. Understand the basic of network synthesis.
- 4. Understand the properties of network function.

Total hours: 48 hours

#### Term work:

Must be submit at least two assignments.

#### Content beyond syllabus:

1.Locus diagram and Electro magnetism

#### Self-Study:

#### Contents to promote self-Learning:

SN	Торіс	CO	Reference
0			
1	Analysis of Three Phase	CO1	https://www.youtube.com/watch?v=xaeob9lTXS0
	balanced circuits		
2	Analysis of Three Phase	CO2	https://www.youtube.com/watch?v=xaeob9lTXS0
	unbalanced circuits		

3	Transient response for RL and RC circuits	CO3	https://www.youtube.com/watch?v=2MaPC8Iw7nc
4	Fourier Theorem	CO4	https://nptel.ac.in/courses/108/104/108104139/
5	RC, RL filters	CO5	https://www.youtube.com/watch?v=AGyjYG88LlE
6	basic synthesis procedure	CO6	https://nptel.ac.in/courses/108/102/108102042/

#### Text Book(s):

1. William Hayt, Jack E. Kemmerly and Jamie Phillips, "Engineering Circuit Analysis", Mc Graw Hill, 9th Edition, 2019.

2. A. Chakrabarti, "Circuit Theory: Analysis & Synthesis", Dhanpat Rai & Sons, 2008.

#### **Reference Book(s):**

1. M.E. Van Valkenberg, "Network Analysis", 3rd Edition, Prentice Hall (India), 1980.

2. V. Del Toro, "Electrical Engineering Fundamentals", Prentice Hall International, 2009.

3. Charles K. Alexander and Matthew. N. O. Sadiku, "Fundamentals of Electric Circuits" Mc Graw Hill, 5th Edition, 2013.

4. Mahamood Nahvi and Joseph Edminister, "Electric Circuits" Schaum's Series, 6th Edition, 2013.

5. John Bird, Routledge, "Electrical Circuit Theory and Technology", Taylor & Francis, 5th Edition, 2014.

6. Sudhakar, A., Circuits and Networks, Tata McGraw

7. Suresh Kumar, K.S. Electrical circuits and Networks, Pearson Education.

8.Network Analysis and Synthesis – Umesh Sinha- Satya Prakashan Publications

9.A. Anand Kumar, Network Analysis and Synthesis, PHI publication

#### **Online Resources:**

1.<u>http://www.acadmix.com/eBooks_Download</u>

2. http://www.freetechbook.com/software-engineering-f15.html

#### Web References:

1)http://www.mathtutordvd.com/products/Engineering-Circuit-Analysis-Volume-1.cfm

2)<u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-andelectronics-spring-2007/video-lectures/lecture-2/</u>

3) <u>http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Circuit/Circuit1.html</u>

NARAYANA ENGINEERING COLLEGE::NELLORE										
II-B.Tech		POWER SYSTEM ARCHITECTURE (21EE2003) R2021								
Semester	Hours / Week			Total hrs	Credit	Max Marks				
	L T P			С	CIE	SEE	TOTAL			
Ι	0 0 3 48 3 40 60 100									

**Pre-requisite:** Basic concepts of electrical circuits and theorems

#### **Course Objectives:**

- 1. To understand the structure, essential components and their layout in non renewable generating stations.
- 2. To understand the electrical power generation from renewable energy sources as sun, wind and ocean.
- 3. To understand the calculation of different transmission line parameters and their use.
- 4. To understand the various effects in transmission line.
- 5. To understand the modeling of transmission line.

Course	<b>Outcomes</b> :	On	successful	comp	oletion	of th	e course,	student	will	be abl	e to:
--------	-------------------	----	------------	------	---------	-------	-----------	---------	------	--------	-------

	1
CO 1	Describe the working principle and operation of Nonrenewable generating stations. (BL-2)
CO 2	Discuss the working principle and operation of various Renewable energy sources. (BL-2)
CO 3	Analyze and compute the transmission line parameters. (BL-4)
CO 4	Estimate the performance of a given transmission line ( <b>BL-5</b> )
CO 5	Analyze the performance of transmission lines ( <b>BL-4</b> )

	CO-PO Mapping													
со	РО												PSO	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2										2	2
CO2	2	3											3	2
CO3	3	2											3	2
CO4	2	3	1		1								1	3
CO5	3	3											1	1
						1: Lov	w, 2-Med	lium, 3- I	High					

#### MODULE – 1 NON RENEWABLE GENERATING STATIONS

**Thermal Power plant:** Importance of electrical power generation-Sources of energy-Conventional and nonconventional sources-Block Diagram of Thermal Power Station (TPS).

**Hydro Power plant:** Merits and demerits of hydroelectric power plants, Selection of site. Generalarrangement of hydel plant, Classification of the plants.

**Nuclear Power plant**: Introduction, Merits and demerits, selection of site, Nuclear reaction, Nuclear fuels, Nuclear plant and layout.

**MODULE-2** 

11 hrs

**Solar Power Generation**: Solar Cell Fundamentals, Solar Cell Characteristics, Solar Cell Classification, Maximizing the Solar PV Output and Load Matching. Maximum Power Point Tracker, Solar PV Systems. **Wind Power Generation**: Basic principles of wind energy conversion power in the wind-Forces on blades and thrust on turbines – Wind energy conversion – site selection considerations– types of wind energy collectors.**Bio Energy:** Biomass conversion technologies , Bio gas generation , Factors affecting bio digestion or generation of gas , Classification of bio gas plants.

#### MODULE-3 TRANSMISSION LINE PARAMETERS

8 hrs

10 hrs

Types of Conductors, Resistance For Solid Conductors – Skin Effect- Calculation of Inductance for Single Phase and Three Phase, Concept of GMR & GMD, Symmetrical and Asymmetrical Conductor Configuration with and without Transposition, Numerical Problems, Capacitance Calculations for Symmetrical and Asymmetrical Single and Three Phase, Effect of Ground on Capacitance.

#### MODULE-4 MODELING OF TRANSMISSION LINES 10 hrs

Classification of Transmission Lines and their equivalent circuits- Nominal-T, Nominal-π. Mathematical Solutions to Estimate Regulation and Efficiency. Evaluation of A,B,C,D Constants, Surge Impedance & its Loading, Wavelengths and Propagation, Ferranti Effect, Charging Current.

#### MODULE-5

#### PERFORMANCE OF TRANSMISSION LINE

**Insulators:** Types of Insulators, String Efficiency and Methods for Improvement, and numerical problem. **Corona:** Corona Phenomenon, Factors Affecting Corona, Critical and disruptive Voltages and Power Loss, Radio Interference.**Sag and Tension Calculations:** Sag and Tension Calculations with Equal and Unequal Heights of Towers,Effect of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Template.

Total hours:	48 hours

#### Text Book(s):

1. Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Dhanpat Rai & Co. Pvt. Ltd., 1999

2. Non Conventional Energy Sources by G.D. Rai, Khanna Publishers, 2000.

#### **Reference Book(s):**

1. Principles of power systems by V.K.Mehta,Rohith Mehta S.Chand(P), 4th Edition

2. "Generation of Electrical Energy"- by B.R Gupta-S.Chand Publications,6th Edition(Reprint 2014)

3. Electrical Power Systems for Industrial Plants, Kamalesh Das, JAICO Publishing House, 2008.

4. Electrical power systems, C.L.Wadhwa, New Age International (P) Limited, 6th Edition, 2014

#### **Content beyond syllabus:**

1. Betz criterion, wind energy applications.

2. Underground Cables.

#### Text Book(s):

- Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Dhanpat Rai & Co.Pvt. Ltd., 1999.
- 2. Non Conventional Energy Sources by G.D. Rai, KhannaPublishers, 2000.

#### **Reference Book(s):**

- 1. Principles of power systems by V.K.Mehta, Rohith Mehta S.Chan(P), 4th Edition.
- 2. "Generation of Electrical Energy" by B.R Gupta-S.Chand Publications, 6th Edition (Reprint 2014).
- 3. Electrical Power Systems for Industrial plants, Kamalesh Das, JAICO Publishing House, 2008.
- Electrical Power Systems, C.L.Wadhwa, New Age International (P) Limited, 6th Edition, 2014.

#### **Online Resources:**

https://www.ibef.org/industry/power-sector-india

https://www.slideshare.net/sidhu007/non-conventional-sources-of-energy-30135444 https://www.energy.gov/eere/water/types-hydropower-plants https://www.academia.edu/34930327/Insulators

https://www.acadefina.edu/34950527/ins

## Web Resources:

https://www.birdvilleschools.net

https://www.learnpick.in/prime/documents/ppts/details/4866/solar-cell-technology

https://courses.engr.illinois.edu

https://vikaspedia.in/energy/energy-production/wind-energy/types-of-wind-energy-conversiondevices

https://www.learnpick.in/prime/documents/ppts/details/3777/biomass-conversion-technologies

NARAYANA ENGINEERING COLLEGE::NELLORE										
II-B.Tech	II-B.TechDATA STRUCTURES AND ALGORITHMS LAB (21ES1513)R2021									
Semester	Hours / Week			Total hrs	Credit	Max Marks				
	L	Т	Р		С	CIE	SEE	TOTAL		
Ι	0	0	3	48	1.5	40	60	100		

	COURSE CONTENT	
TASK-1		<b>3H</b>
1. Write a Progra	m to Implement the following Searching Algorithms:	
a)Linear Search	b) Binary Search	
TASK-2		<b>6H</b>
1. Implement the	following using arrays:	
A. Write a Pro	Ogram to Implement Stack Operations	k
2.Write a Progra	m to evaluate the Postfix Expression using stack	к.
TASK-3		<b>3</b> H
1. Write a Progra	m to Implement Queue Operations using Arrays	
2.Write a Program	n to Implement Circular Queue Operations using Arrays	
TASK-4		<b>6H</b>
1. Write a Progra	m to implement the operations of Singly Linked List	
2.Write a Program	to implement the operations of Doubly Linked List	
TASK-5		<b>6H</b>
1. Write a Progra	m to implement stack operations using linked list	
2.Write a Program	n to implement the operations of Circular Singly Linked List	
TASK-6		3Н
1.Write a Program	n to Sort the set of elements:	
a) Insertion S	ort b) Quick Sort	
TASK-7		3Н
1. Write a Progra	m to Sort the set of elements:	
a)Merge Sort	b) Heap Sort	
TASK-8		6H
1. Write a Progra	m to implement the following on trees	
a) Insertior	and deletion operations	
b) Traversa	lls	
2. write a Program	n to implement Binary Search Tree Operations.	~~~
TASK-9		6H
a) Depth	first traversal b) Breadth first traversal	
TASK-10		6H
1. Write a Progra	m to implement the following Minimum Spanning Tree Algorithm	ns:
a) Kruskal's A	Algorithm b) Prim's Algorithm	
	Additional Experiments:	
1. Write Program	n to Implement Fibonacci Search	
2. Write a Progra	m to Implement Double Ended Queue Operations by using Array	
4 Write a Program	to Implement Radix Sort	
4.Write a Program	to Implement Radix Sort	

#### 48 hours

#### **TEXTBOOK:**

- 1. D. Samanta, "Classic Data Structures", 2nd Edition, Prentice-Hall of India, Pvt. Ltd., India, 2012.
- 2. Horowitz Sahni and Anderson-Freed —Fundamentals of Data Structures in C. 2nd Edition, Universities Press, 2008.

#### **REFERENCES:**

- 1. Richard F. Gilberg& B. A. Forouzan —Data Structures A Pseudocode Approcah with C, Second Edition, CENGAGE Learning.
- 2. Ananda Rao, Data Structures and Algorithms Using C++, Akepogu, Radhika Raju Palagiri, Pearson, 2010.
- 3. Mark Allen Weiss, Data structure and Algorithm Analysis in C. Addison Wesley Publication. 2006.

NARAYANA ENGINEERING COLLEGE::NELLORE										
II-B.Tech	B.Tech ELECTRONICS DEVICES AND CIRCUITS LAB (21ES1514) R2021									
Semester	Hours / Week			Total hrs	Credit	Max Marks				
	L T P			С	CIE	SEE	TOTAL			
Ι	0	0	2	32	1	40	60	100		

Tasks List
Task-1: PN Junction Diode
Objective: To verify the Volt- Ampere characteristics of a PN junction diode and find static,
dynamic and reverse resistances of the diode from the graphs.
Task-2: Zener Diode
<b>Objective:</b> To design a Zener diode based voltage regulator against variations of supply and
load.
Task-3: Half Wave Rectifier
<b>Objective:</b> To design a half wave rectifier for the given specifications with and without filters
and verify experimentally and draw suitable graphs.
Task-4: Full Wave Rectifier
<b>Objective:</b> To design a full wave rectifier for the given specifications with and without filters
and verify experimentally and draw suitable graphs.
Task-5: Common Base Configuration
Objective: To study and draw the input and output characteristics of BJT for common base
configuration experimentally, and calculate h-parameters from the graph.

#### **Task-6: Common Emitter Configuration**

**Objective:** To verify the input and output characteristics of BJT common emitter configuration experimentally and find h-parameters from the graph.

#### **Task-7: Common Collector Configuration**

**Objective:** To verify the input and output characteristics of BJT common collector configuration experimentally and find h-parameters from the graph.

## **Task-8: MOSFET Characteristics**

**Objective:** To study and draw the Volt Ampere characteristics of MOSFET.

#### Task-9: MOSFET As Switch

**Objective:** To study the switching characteristics.

#### **Task-10: LED Characteristics**

**Objective:** To study the characteristics of LED.

#### **Additional Experiments**

Task-13: Voltage- Divider Bias Circuit Using BJT.

**Objective:** To analyze and design the voltage- divider bias/self bias circuit using BJT.

#### **Task-14: Clippers And Clamper Circuits**

Objective: To verify clipping and clamper circuits using PN junction diode and draw the suitable graphs.

#### **Text Book(s):**

M. Morris Mano, M.D. Ciletti, "Digital Design", 5th edition, Pearson, 2018.

John F Wakely Digital Design Principles And Practices, Pearson Publication, Fourth edition

Z. Kohavi and N. K. Jha, "Switching and Finite Automata Theory", 3rd edition, Tata McGraw Hill, 2010.

#### **Reference Book(s):**

Charles H Roth (Jr), Larry L. Kinney, "Fundamentals of Logic Design", 5th edition, Cengage Learning India Edition, 2010.

John. M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.

R. P. Jain, "Modern Digital Electronics", 4th edition, McGraw-Hill Education (India Private Limited), 2012.

NARAYANA ENGINEERING COLLEGE::NELLORE										
II-B.TechUniversal Human Values (21EN1002)R2021										
Semester	Hours / Week			Total hrs	Credit		ks			
	L	Т	Р		С	CIE	SEE	TOTAL		
II	3	0	0	48	3	40	60	100		

Pre-requisite: Basic concepts of electrical circuits and theorems

#### **Course Objectives:**

The objective of the course is four fold:

1. Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

3. Strengthening of self-reflection.

4. Development of commitment and courage to act.

Course (	Course Outcomes: On successful completion of the course, student will be able to:								
CO 1	Students are expected to become more aware of themselves, and their surroundings (family,								
001	society, nature) (BL-2)								
$CO^{2}$	They would become more responsible in life, and in handling problems with sustainable								
02	solutions, while keeping human relationships and human nature in mind. (BL-2)								
CO 3	They would have better critical ability. (BL-2)								
CO 4	They would also become sensitive to their commitment towards what they have understood								
CU 4	(human values, human relationship and human society). (BL-2)								
CO 5	It is hoped that they would be able to apply what they have learnt to their own self in different								
005	day-to-day settings in real life, at least a beginning would be made in this direction. (BL-3)								

	CO-PO Mapping													
со		PSO												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								3	2	2				
CO2								3	2	2				
CO3								3	2	2				
CO4								3	2	2				
CO5								3	2	2				
						1: Lov	w, 2-Med	lium, 3- I	ligh					

#### Unit 1:

#### **Course Introduction - Need, Basic Guidelines, Content and Process for Value Education**

. Purpose and motivation for the course, recapitulation from Universal Human Values-I

. Self-Exploration what is it? - Experiential Validation- as the process for self-exploration

. Continuous Happiness and Prosperity- A look at basic Human Aspirations

. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority

. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario

. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence)rather than as arbitrariness in choice based on liking-disliking

#### Unit 2: Understanding Harmony in the Human Being - Harmony in Myself!

- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- Understanding the characteristics and activities of 'I' and harmony in 'I'
- Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

## Unit 3:

# Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

- Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- Understanding the meaning of Trust; Difference between intention and competence
- Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

## Unit 4:

# Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- Understanding the harmony in the Nature
- Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- Understanding Existence as Co-existence of mutually interacting units in allpervasive space
- Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

## Unit 5:

## Implications of the above Holistic Understanding of Harmony on Professional Ethics

- Natural acceptance of human values
- Definitiveness of Ethical Human Conduct
- Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- Case studies of typical holistic technologies, management models and production systems
- Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc.

## Text Book

 R R Gaur, R Asthana, G P Bagaria, "A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1  R R Gaur, R Asthana, G P Bagaria, "Teachers' Manual for A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

## **Reference Books**

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.
- 2. A. N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. Mohandas Karamchand Gandhi "The Story of My Experiments with Truth"
- 5. E. FSchumacher. "Small is Beautiful"
- 6. Slow is Beautiful -Cecile Andrews
- 7. J C Kumarappa "Economy of Permanence"
- 8. Pandit Sunderlal "Bharat Mein Angreji Raj"
- 9. Dharampal, "Rediscovering India"
- 10. Mohandas K. Gandhi, "Hind Swaraj or Indian Home Rule"
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland(English)
- 13. Gandhi Romain Rolland (English)

NARAYANA ENGINEERING COLLEGE:NELLORE														
II-B.Tech	AC MACHINES (21EE2004) R2021													
Semester	Hours / Week Total Credit Max M											lax Ma	rks	
	L	,	Т		Р	h	nrs	C		CIE		SEE	TO	TAL
II	3		0		0	2	48	3		40		60	1	00
Pre-requisi	te: Ni	il												
Course Objectives:														
1. To unde	1. To understand the Constructional details, principle of operation and the importance of slip													
in Inductio	Induction motor operation													
2. To unde	To understand the slip-torque characteristics and torque calculations of Induction motor													
3. To unde	nderstand the methods of starting and speed control of Induction motor													
4. To unde	To understand the construction and principle of working of synchronous machines													
5. To unde	. To understand the different methods of predetermining the regulation of alternators													
6. To unde	iderstand the concepts and computation of load sharing among alternators in parallel.													
7. To und	To understand the performance characteristics of synchronous motors and their use as													
synchronou	ynchronous condensers for power factor improvement.													
8. To unde	8. To understand the different types of single phase motors and special motors used in house													
hold applia	inces a	and co	ontrol	systen	ns.	U	1			1				
Course Out	<b>Course Outcomes:</b> After successful completion of the course, the student will be able to:													
CO 1	To acquire the basic knowledge of construction working and operation of													
	indu	ction	motor			0			,	0		I		
CO 2	Iden	tifv di	ifferen	t spee	d cont	rollin	g tech	nique	s of I	nductio	n mo	tor for	the giv	en
	appl	icatio	n	. spee			0						B	•
(03	To i	mnart	know	ledge	on Co	nstruc	tion a	nd per	form	ance o	f salie	ent and	non –	
000	salie	nt typ	e svnc	hronc	us ger	erato	rs and	l deter	mine	how se	-veral	altern	ators ru	nning
	in no	arallel	share	the lo	ad on	the sy	is and		mine	110 00 50	c verai	ancin		unng
<u> </u>	Anol			formation		omo oto	mintin.	ofar	nahn		motor			
	Ana	iyze ti	le peri			aracte		<u>s or sy</u>		Shous I		5.	<u>c</u>	C
05	101	mpart	know	ledge	on Co	nstruc	ction,	princip		operat	tion at	nd per	tormanc	e of
	sing	le pha	se ind	uction	motor	rs and	spec:	ial ma	chine	S.				
					C	<u>:0-PO</u>	Map	ping						
0	<b>DO</b>	<b>DO</b>	<b>DO</b>	<b>DO</b>		<u>ч</u>			<b>DO</b>		<b>DO</b>	<b>DO</b>		
	1	2	2		ΓU	6	7	2 2	р 90	10	11	12	1	2
CO1	<u>+</u> ר	2	1		5	0	,			10	**		2	2
CO2	3	2	2					1		1		<u> </u>	2	2
CO3	3	2	2										2	2
CO4	3	2	1										2	2
CO5														
1: Low, 2-Medium, 3- High														

#### COURSE CONTENT

#### MODULE – 1 POLYPHASE INDUCTION MOTORS

Polyphase Induction Motors-Constructional Details of Cage and Wound Rotor Machines, Production of Rotating Magnetic Field, Principle of Operation, Slip, Rotor Power Input, Rotor Copper Loss and Mechanical Power Developed and Their Inter Relationship.

At the end of the Module 1, students will be able to:

- Able to Analyze Production of Rotating Magnetic Field.
- Able to understand Cage and Wound Rotor Machines.

## MODULE -2

## STARTING METHODS OF INDUCTION MOTORS

Torque Equation, Expressions for Torque, Torque Slip Characteristics, Load characteristics, Equivalent Circuit, Phasor Diagram, Crawling and Cogging, Circle Diagram.

Starting- Starting methods of squirrel cage and wound rotor induction motor. Speed Control-Various methods of speed control of squirrel cage and wound rotor induction motor.

At the end of the Module 2, students will be able to:

- Able to Analyze Torque Slip Characteristics
- Able to understand Starting Methods of Induction Motors

#### MODULE-3 SYNCHRONOUS GENERATORS

Principle and Constructional Features of Salient Pole and Round Rotor Machines – Armature Windings, E.M.F Equation- Armature reaction – Voltage Regulation Methods, Power Flow Equation in Alternators – Synchronizing Power and Torque – Parallel Operation and Load Sharing – Effect of Change of Excitation and Mechanical Power Input – Determination of  $X_d$  and  $X_q$ .

At the end of the Module 3, students will be able to:

- Able to understand the construction and principle of operation of synchronous generators.
- Able to understand the Voltage Regulation Methods.
- Able to understand the parallel operation of synchronous generators.
- Able to understand the Sub-Transient, Transient and Steady State Reactances.

#### MODULE-4 SYNCHRONOUS MOTORS

Synchronous Motors Operation – Phasor Diagram – Power Flow Equations in Synchronous Motors- Variation of Current and Power Factor with Excitation – V and Inverted V Curves – Hunting, and Methods to Eliminate Hunting – Starting Methods of Synchronous Motor.

At the end of the Module 4, students will be able to:

- Able to understand the operation of synchronous motors.
- Able to understand the Starting Methods of Synchronous Motor.

## MODULE-5

#### SINGLE PHASE AND SPECIAL MOTORS

Single Phase Induction Motors - Constructional Features – Double Revolving Field Theory-Cross Field Theory – Split Phase Motors – Capacitor Start and Run Motors – Shaded Pole Motor. A.C Series Motor - Universal Motor – BLDC Motors, Reluctance Motor, Stepper Motor. At the end of the Module 5, students will be able to:

- Able to understand the operation of Single Phase Induction Motors.
- Able to understand the special Electrical Machines.

Total hours: 48 hours

#### Term work:

Synchronous machines & Induction machines- Power plants & Industrial visits.

#### Content beyond syllabus:

1. Advanced Speed Control methods for Poly phase Induction Motors.

- 2. Two Reaction Theory –Determination of Xd and  $X_q$  (Slip Test).
- 3. Principle of operation and control of Brushless DC motor.

#### Self-Study:

Contents to promote self-Learning:

 Jincenies			
SNO	Торіс	СО	Reference

1	3-phase Induction Motors	CO1	https://nptel.ac.in/courses/108/102/108102146/
2	Circle Diagram	CO2	https://nptel.ac.in/courses/108/105/108105131/
3	Synchronous Generator	CO3	https://www.youtube.com/watch?v=b24jORRoxEc
4	Parallel operation of Alternators	CO4	https://www.youtube.com/watch?v=aZR7JsH9Qn M
5	Synchronous motor	CO5	https://www.youtube.com/watch?v=fdMIuEqh48 M&list=PLPpCFgQP7QKHSJQnSwaigL89gshecy cXs
6	Single Phase Induction motors	CO6	https://nptel.ac.in/courses/108/102/108102146/

#### Text Book(s):

1. Electrical Machinery, P.S. Bimbhra, Khanna Publishers, 7th Edition, 2011.

 Electric Machines 4th edition, D.P.Kothari and I.J. Nagrath, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2010, 16th Reprint 2015.

#### **Reference Book(s):**

1. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.

2. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

3. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.

4. A. S. Langsdorf, "Alternating current machines", McGraw Hill Education, 1984.

5. Electrical Machines, S K Bhattacharya, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2014, 3rd Reprint 2015.

#### **Online Resources:**

1. <u>http://175.101.102.82/moodle/</u>

2. https://www.accessengineeringlibrary.com/

3. https://www.slideshare.net/

4. https://easyengineering.net/electrical-machinery-by-bimbhra/

5.https://books.google.co.in/books?id=dh_gDwAAQBAJ&lpg=PR1&dq=electrical%20machines%20by%20 kothari%202020&pg=PR8#v=onepage&q&f=false

#### Web Resources:

1. https://electrical-engineering-portal.com/

2. <u>https://www.electrical4u.com/</u>

3. <u>http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/Sadhya/experimentlist.html</u>

4. <u>https://www.engineering.com/</u>

	NARAYANA ENGINEERING COLLEGE:NELLORE												
II-B.Tech ANALOG ELECTRONIC CIRCUITS (21EE2005) R2021													
Semester	H	Hours / Week Total Credit Max Marks											
	L	Т	Р	hrs	C	CIE	SEE	TOTAL					
П	II 3 0 0 48 3 40 60 100												

## NARAYANA ENGINEERING COLLEGE::NELLORE

## ANALOG ELECTRONIC CIRCUITS

## **MODULE-1**

## WAVE SHAPING CIRCUITS

10h

Linear Wave Shaping: High pass and low pass RC circuits and their response for sinusoidal, Step, Pulse, Square& Ramp inputs, High pass RC network as differentiator, Low pass RC circuit as an integrator.

Non-Linear wave shaping: Diode clippers, Transistor clippers, Clipping at two independent levels. Clamping operation, Clamping circuit by considering source and diode resistances.

#### **MODULE-2**

## FEEDBACK AMPLIFIERS & OSCILLATORS

10h

Feedback amplifiers: Feedback principle and concept, Types of feedback, Feedback topologies, Characteristics of negative feedback amplifiers, Determination of input & output impedance of voltage series, Voltage shunt, Current series& current shunt configurations .

Oscillators: Oscillator principle, Condition for oscillations, Types of oscillators, Hartley oscillator, Colpitt's oscillator, RC-phase shift oscillator, Wein bridge oscillator.

## MODULE-3 SINGLE STAGE & MULTISTAGE AMPLIFIERS

9h

Single stage amplifiers: Transistor hybrid model, Determination of h-parameters, Generalized analysis of transistor amplifier model using h-parameters, Analysis of CB, CE and CC amplifiers. Multi stage Amplifiers: Classification of amplifiers, Different coupling techniques, Cascaded amplifier, Cascode amplifier.

## **MODULE-4**

## **POWER AMPLIFIERS**

9h

Classification, Series fed Class A large signal amplifier, Transformer coupled class A large signal amplifier, Amplifier distortion, Push- pull class B amplifier, Complementary symmetry class B amplifier, Push- pull class AB amplifier, Complementary symmetry class AB amplifier, Class D amplifier, Heat sink and thermal stability.

#### MODULE-5

#### **OP-AMP CHARACTERISTICS**

Introduction, Ideal and practical Op-amp, Op-amp characteristics – DC and AC characteristics, 741 Op-amp and its features, Modes of operation-inverting, Non-inverting, Differential. Basic applications of Op-amp, Instrumentation amplifier, Sample &hold circuits, Differentiator and integrator, Comparators, Schmitt trigger, Multi-vibrators, Introduction to voltage regulators.

#### **Text Book(s):**

1. Millman, Halkias and Jit, "Electronic Devices and Circuits", 4th Edition, Mc Graw Hill Education (India) Private Ltd., 2015.

2. Donald A. Neaman, "Electronic Circuit Analysis and Design", McGraw-Hill.

3. Ramakanth A. Gayakwad, "Op-Amps & Linear Ics", 4th Edition, Pearson, 2017.

#### **Reference Book(s):**

1. Millman and Taub, Pulse, Digital and Switching Waveforms, 3rd edition, Tata McGraw-Hill Education, 2011.

- 2.J. Milliman, C. C. Halkias and Chetan Parikh, "Integrated Electronics", 2nd edition, McGraw-Hill, 2010.
- 3. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits Theory" Pearson/Prentice Hall, 9th edition, 2006.

	NARAYANA ENGINEERING COLLEGE:NELLORE													
II-B.Tech		ENG	INEF	ERINO	G ELF	ECTR	OMA	GNE	TICS	5 (21E)	E2006	6)	R202	1
Semester		Но	ours / '	Week		Т	otal	Cred	it		Μ	lax Ma	urks	
	Ι		Т		Р	ł	nrs	C	l ,	CIE		SEE	TO	TAL
II		3	0		0	4	48	3		40		60	1	00
Pre-requis	site:	Nil											·	
Course Ol	Course Objectives:													
1. To review	1. To review the fundamentals of the different coordinate systems, vector algebra and calculus													
2. To teach	2. To teach the basic laws of electromagnetism													
3. To learn	to co	mpute	e and v	visuali	ze the	electr	ostati	c and	magn	etostat	ic fiel	ds for	simple	
configurati	ons													
4. To analy	se the	e time	varyii	ng ele	ctric a	nd ma	ignetic	e field	s and	to und	erstar	nd May	well's	
equations														
5. To under	rstand	l the p	ropag	ation o	of elec	troma	gnetic	e wave	es thro	ough d	ifferei	nt med	ia	
Course O	Course Outcomes: After successful completion of the course, the student will be able to:													
CO 1	Ab	ility to	o ident	tify ap	propri	ate co	ordin	ate sy	stems	and vi	sualiz	ze and	underst	and
	the	practi	cal sig	nifica	nce of	vecto	or calc	ulus						
CO 2	Un	dersta	nding	of the	basic	laws	of elec	ctrosta	tics,	Ability	to co	mpute	e, visual	ize
	elec	trosta	tic fie	lds alo	ong wi	th pra	ctical	applic	ation	S				
CO 3	Unc	lerstar	nding	of the	basic	laws o	of mag	gnetos	tatics					
<b>CO 4</b>	Ab	ility to	o com	pute, v	visuali	ze ma	gneto	static	fields	s along	with	praction	cal	
	app	licatio	ons											
CO 5	Unc	lerstar	nding	of Ma	xwell'	s equ	ations	in dif	feren	t forms	and 1	nediui	n	
					С	)-P()	Man	ning						
CO						<u>P 1-0</u>	$\frac{1}{0}$	<u>pins</u>					PS	50
00	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2									2	1
CO2	3	3	2	2									2	1
CO3	3	3 3 1 1 2 1												
<u>CO4</u>	3	3	2	2									2	1
CO5	3	3	2	2									2	1
					I: Low	, 2-M	lediun	1, 3- F	lıgh					

## **COURSE CONTENT**

## MODULE – 1

## ELECTROSTATICS

Vector algebra, Coordinate systems, Vector calculus- Gradient, Divergence and Curl theorems and applications, Sources and effects of electromagnetic fields, Coulomb's Law – Electric field intensity – Field due to discrete and continuous charges – Gauss's law and its applications.

At the end of the Module 1, students will be able to:

- 1. Recollect the basic concepts Vectors
- 2. Understand the applications of Electrostatics
- 3. Illustrate the basic laws of Electrostatics

## MODULE -2

## ELECTRIC FIELD IN MATERIALS

Electric potential – Electric field and equipotential plots– Electric field in free space, conductors, dielectric –Dielectric polarization – Dielectric strength – Electric fields in multiple dielectrics – Boundary conditions, capacitance, Energy density, Poisson's and Laplace's equations.

At the end of the Module 2, students will be able to:

- 1. understand the concept of Electric potential
- 2. Differentiate between conductor and dielectric in electric field

## MODULE-3

## ELECTRO MAGNETIS

Magnetic field intensity (H) – Biot– Savart's Law – Ampere's Circuit Law – H due to straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) – Magnetic force, Lorentz force, force between two conductors,- Boundary conditions.

At the end of the Module 3, students will be able to:

- 1. Understand the basic laws of Magnetostatics
- 2. Analyze the concept of magnetic force

## MODULE-4

#### MAGNETIC POTENTIAL

Scalar and vector potential, Poisson's Equation, Torque, Inductances and mutual inductances of solenoid and toroid, Neumann's formula, Energy density, Numerical problems.

At the end of the Module 4, students will be able to:

- 5. Apply the poisson's & Laplace's equations to different problems
- 6. Analyze the inductance of different coil combinations

## MODULE-5

#### ELECTRODYNAMIC FIELDS

Magnetic Circuits – Faraday's law – Transformer and motional EMF – Displacement current – Maxwell's equations (differential and integral form) – Time varying potential.

At the end of the Module 5, students will be able to:

- 1. Understand the Faraday's law of electromagnetic induction
- 2. Analyze the Maxwell's equations for static and time varying fields

Total hours: 60 hours

#### Term work:

#### **Content beyond syllabus:**

1.

power transmission

#### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	CO	Reference
1	Gauss's law and its	CO1	https://www.youtube.com/watch?v=M0GInI0vNh
	applications		<u>8</u>
2	Poisson's and	CO2	https://www.youtube.com/watch?v=I-lKnLnnbY4
	Laplace's equations		

Electric

3	Biot-Savart's Law	CO3	https://www.youtube.com/watch?v=X9mYh8aG2
			AQ
4	Neumann's formula	CO4	https://www.youtube.com/watch?v=iVANETIf3c
			<u>M</u>
5	Displacement current	CO5	https://www.youtube.com/watch?v=77PZPBXMl
			<u>1w</u>
6	Wave parameters;	CO6	https://www.youtube.com/watch?v=z_L58oLkW
	velocity, intrinsic		<u>c</u>
	impedance,		
	propagation constant		

Pext Book(s).
1. Mathew N. O. Sadiku, S.V.Kulkarni, 'Principles of
Electromagnetics', 6 th Edition, Oxford
Jniversity Press, 2015, Asian Edition
2. William H. Hayt and John A. Buck, 'Engineering
Electromagnetics', Tata McGraw Hill,8 th
tevised edition, 2014
Reference Book(s):
<ol> <li>Bhag Singh Guru and Huseyin R. Hiziroglu "Electromagnetic field theory</li> </ol>
undamentals", Cambridge University Press; Second Revised Edition, 2009.
4. Ashutosh Pramanik, 'Electromagnetism – Theory and
Applications', PHI Learning Private
Limited, New Delhi, Second Edition-2009
. Inan U. S. and A. S. Inan, Engineering Electromagnetics, Pearson Education, 2010.
. Joseph. A.Edminister, 'Schaum's Outline of Electromagnetics, Third Edition (Schaum's
Dutline Series), Tata McGraw Hill, 2010
Online Resources:
. http://alumni.media.mit.edu/~aggelos/papers/EM_Hayt_6th.pdf
. <u>https://nptel.ac.in/courses/108/106/108106073/</u>
Veb Resources:
•
<u>ttps://www.youtube.com/watch?v=pGdr9WLto4A&amp;list=PLl6m4jcR_DbOx6s2toprJQx1MORq</u>
$\frac{2910}{100}$
. <u>https://www.youtube.com/watch?v=G5P6dInMTFg&amp;list=PLuv3GM6-gsE3-hVNaw</u>
<u>ED/EEY5AVPZdz</u>

NARAYANA ENGINEERING COLLEGE:NELLORE												
II-B.Tech	LINEAR CONTROL SYSTEMS (21EE2007) R2021											
Semester	Н	lours / Wee	k	Total	Credit		Max Marl					
	L	Т	Р	hrs	С	CIE	CS	TOTAL				
II	3 0 0 48 3 40 60 100											
Pre-requisite: Basics concepts of Electrical Circuits & Basics of Laplace transform												
Course Objectives:												
1. To under	erstand the merits and demerits of open and closed loop control systems											
2. To under	stand the	mathemat	ical modeli	ng of Elect	trical and m	nechanical	control sys	stems				
3. To under	stand the	step respo	nse of seco	ond order o	control syst	ems						
4. To plot R	oot locus f	or the give	en system t	ransfer fu	nction							
5. To under	stand the	stability an	alysis from	n Bode plo	t, polar plo	ts						
6. To under	stand the	state space	e analysis									
Course Out	comes: Af	ter success	ful comple	etion of th	e course, tl	ne student	will be ab	e to:				
CO 1	Determine	e the transf	er function	for the give	ven electric	al or mech	anical syste	ems and also				
	determine	the transfe	r function of	of a system	using bloc	k diagram	reduction to	echniques and				
	Mason's g	gain formul	a									
CO 2	Analyze t	he system b	ehaviour ir	n time dom	ain and step	response t	o various d	ampings.				
CO 3	Determin	e the stabil	ity of given	system by	applying Ro	outh's stabi	lity criteria					
CO 4	Analyze t	he stability	of given sy	vstem by m	eans of Boo	le plot and	polar plot					
CO 5	Determin	e the state	model and	l assessmen	nt of contro	ollability &	c observabi	lity from the				
	given tran	sfer function	on.									

CO-PO Mapping														
СО	PO PSO													
	PO P													PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2												1
CO2	2	1												1
CO3	2	1												1
CO4	2	1	1											1
CO5	2	1	1											1
					1: Lov	w. 2-M	edium	. 3- Hi	gh					

## COURSE CONTENT MODULE – 1 INTRODUCTION TO CONTROL SYSTEMS

Examples & Classification of control systems, merits and demerits of Open Loop and closed loop control systems, Effects of positive and negative feedback

Mathematical modelling and transfer function of Electrical and Mechanical systems, Analogous systems. **Control System Components**: DC Servo motor, AC Servo motor, Synchro Transmitter & Receiver **Block diagrams**: Block diagram representation of control systems, Block Diagram Reduction Rules .**Signal flow graph**: Definitions, Reduction using Mason's gain formula.

At the end of the Module 1, students will be able to:

1. Identify the difference between open loop and closed loop systems

2.Understand the effect of feedback on system performance

3.Model the given electrical or mechanical control system

4. Apply the block diagram reduction to simplify the given system

- 5. Apply the Signal flow graph reduction to simplify the given system
- 6. Derive the transfer function of Ac and DC servo motor

## MODULE-2 TIME RESPONSE ANALYSIS

Standard test signals, Time response of first order and second order un damped, under damped, critically damped and over damped systems, Time domain specifications.

**Error Analysis:** Steady state Error, static error coefficient of type 0,1, 2 systems

At the end of the Module 2, students will be able to:

11. Identify the importance of basic test signals

12. Analyze the Time response of second order system with different dampings

13. compute steady state error for the given system for any input signal.

## MODULE-3

## STABILITY ANALYSIS

**Stability:** The concept of stability, Routh's stability criterion, limitations of Routh's stability. **Root locus plot**: The root locus concept, construction of root loci, effects of adding poles and zeros to G(s)H(s) on the root loci.

At the end of the Module 3, students will be able to:

- 7. Understand various stability issues
- 8. Apply Routh's stability criteria to given system for stability assessment
- 9. Draw Root locus plot for the given system

#### MODULE-4

## FREQUENCY RESPONSE ANALYSIS

Introduction, Frequency domain specifications, Bode plot, polar plot, Transfer function from the Bode Diagram, Stability Analysis from Bode Plots. Polar Plots, Nyquist Plots.

**Compensation Techniques:** Lag, Lead, Lag-Lead Compensators.

At the end of the Module 4, students will be able to:

- 1. Understand various frequency domain specifications.
- 2. Draw the Bode plot for the given system.
- 3. Determine the stability of given system from Bode plot and polar plot

## MODULE-5

## STATE SPACE ANLYSIS

**Introduction:** Concepts of state, state variables and state model, derivation of state models from differential equations, Diagonalization.

**Solution of state equation:** Solving the Time invariant state Equations, State Transition Matrix and it's Properties.

The concepts of controllability and observability.

At the end of the Module 5, students will be able to:

- 1. Understand the importance of state space analysis
- 2. Find the state model for the given transfer function through various techniques.
- 3. Determine the controllability and observability of given state model.

Total hours: 48 hours

#### Content beyond syllabus:

1. Introduction to P,PI,PID controllers.

2. State space representation of Armature and Field controlled DC motor.

#### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	со	Reference
1	Open Loop and closed	CO1	https://www.tutorialspoint.com/control_systems/control_sy
	loop control systems		stems_introduction.htm
2	Block diagram rules	CO2	https://www.tutorialspoint.com/control_systems/control_sy
			stems block diagram algebra.htm
3	Time response of	CO3	https://www.tutorialspoint.com/control_systems/control_sy
	second order system		stems_time_response_analysis.htm
4	Routh's stability	CO4	https://www.tutorialspoint.com/control_systems/control_sy
	criteria		stems_stability_analysis.htm
5	Frequency domain	CO5	https://www.tutorialspoint.com/control_systems/control_sy
	specifications		stems_frequency_response_analysis.htm
6	Controllability and	CO6	https://www.tutorialspoint.com/control_systems/control_sy
	observability		stems_state_space_analysis.htm

#### **Text Book(s):**

1. "Control Systems Engineering, I. J. Nagrath and M. Gopal, New Age International Publishers, 5th edition, 2007, Reprint 2012.

2. Control Systems by <u>A. Anand Kumar</u>, PHI Learning pvt. Ltd., second edition

## **Reference Book(s):**

- 1. Norman S. Nise, "Control Systems Engineering", John Wiley & Sons PTE Ltd, 2013
- 2. 3. Modern Control Engineering, Katsuhiko Ogata, PEARSON, 1st Impression 2015.

#### **Online Resources:**

- 1. http://www.aoengr.com/SampleBook.pdf
- 2. http://www.ent.mrt.ac.lk/~rohan/teaching/EN5001/Reading/DORFCH1.pdf

#### Web Resources:

- 1. https://nptel.ac.in/courses/107/106/107106081/
- 2. <u>https://www.tutorialspoint.com/control_systems/index.htm</u>
- 3. https://www.youtube.com/watch?v=XYbrgwKP_6k
| NARAYANA ENGINEERING COLLEGE:NELLORE                                                |         |         |          |               |          |        |         |           |        |           |         |         |          |       |
|-------------------------------------------------------------------------------------|---------|---------|----------|---------------|----------|--------|---------|-----------|--------|-----------|---------|---------|----------|-------|
| II-B.Tech                                                                           | 1 11    |         | ACHI     | NFS A         |          | RANS   | FOR     | MFRS      | LAR    | (21FF     | 2501    |         | R202     | 1     |
| Semester                                                                            |         | H       | ours / V | Veek          |          |        | otal    | Credi     | t      | Max Marks |         |         |          | -     |
| Semester                                                                            | Ι       |         | T P      |               |          | ns     | С       |           | CIE    |           | CS      | TOTAL   |          |       |
| II                                                                                  | 0       | )       | 0        |               | 3        | 4      | 48      | 1.5       | 5      | 40        |         | 60      | 1        | 00    |
| Pre-requisite: Basics concepts of Electrical Circuits & Basics of Laplace transform |         |         |          |               |          |        |         |           |        |           |         |         |          |       |
| Course Objectives:                                                                  |         |         |          |               |          |        |         |           |        |           |         |         |          |       |
| 1. To famili                                                                        | arize s | studer  | nts abc  | out OC        | C and    | intern | al, ext | ernal     | chara  | cteristi  | cs of d | lc shur | nt gener | ator. |
| 2. To know                                                                          | the p   | erforr  | nance    | charad        | cteristi | cs and | spee    | d cont    | rol m  | ethod o   | of dc s | hunt n  | notor    |       |
| 3. To know                                                                          | how t   | o pre   | detern   | nine th       | ne effic | iency  | of dc   | shunt     | moto   | r.        |         |         |          |       |
| 4. To find e                                                                        | fficier | ncy, lo | sses ar  | nd reg        | ulatior  | of sir | ngle pł | nase tr   | ansfo  | ormer.    |         |         |          |       |
| 5. To know                                                                          | how t   | o finc  | l moto   | r and ${and}$ | genera   | tor ef | ficienc | cy by c   | onne   | cting to  | dc sh   | unt ma  | achines  | back  |
| to back                                                                             |         |         |          |               |          |        |         |           |        |           |         |         |          |       |
| 6. To famili                                                                        | arize s | studer  | nts abc  | out cha       | aracter  | istics | of dc s | series r  | noto   | r         |         |         |          |       |
| Course Out                                                                          | tcome   | s: Aft  | er succ  | essful        | comp     | letion | of the  | e cours   | se, th | e stude   | ent wil | l be ab | le to:   |       |
| CO 1                                                                                | Dete    | rmine   | the m    | agneti        | zation   | and lo | oad ch  | aracter   | istics | of a D    | C shu   | nt gene | erator   |       |
| CO 2                                                                                | Desc    | ribe t  | he effi  | ciency        | and p    | erforn | nance   | charac    | terist | ics of I  | DC mo   | tors    |          |       |
| CO 3                                                                                | Pred    | eterm   | ination  | of tra        | nsforn   | ner wi | th diff | erent l   | oads   |           |         |         |          |       |
|                                                                                     | I       |         |          |               | (        | :O-PO  | Map     | ping      |        |           |         |         |          |       |
| СО                                                                                  |         |         |          |               |          | Р      | 0       |           |        |           |         |         | PS       | 0     |
|                                                                                     | РО      | РО      | РО       | РО            | РО       | РО     | РО      | РО        | PO     | PO        | РО      | РО      | PSO      | PSO   |
|                                                                                     | 1       | 2       | 3        | 4             | 5        | 6      | 7       | 8         | 9      | 10        | 11      | 12      | 1        | 2     |
| CO1                                                                                 | 3       | 3       | 3        | 2             | 2        |        |         |           | 3      | 2         |         | 3       | 3        | 3     |
| CO2                                                                                 | 2       | 3       | 3        | 1             | 2        |        |         |           | 2      | 2         |         | 3       | 3        | 3     |
| CO3                                                                                 | 3       | 3       | 3        | 1             | 2        |        |         |           | 2      | 2         |         | 3       | 3        | 3     |
|                                                                                     |         |         |          |               | 1: Lov   | v, 2-M | ledium  | n, 3- Hig | gh     |           |         |         |          |       |

# List of Experiments Prescribed and Conducted:

1. Conduct an Experiment to obtain OCC Characteristics of dc Shunt generator.

2. Conduct Brake test on dc shunt motor to obtain performance characteristics.

3. Conduct speed control methods of dc shunt motor.

4. Conduct Swinburne's test on a DC Shunt machine.

5. Conduct OC and SC test on single phase transformer

6. Conduct Sumpner's test on two identical transformers

7. Conduct load test on single phase transformer

8. Conduct an Experiment to obtain internal and external characteristics of dc shunt generator.

9. Conduct an experiment from 3phase to 2 phase conversion by using Scott Connection

10. Conduct load test on dc series motor.

Total hours:

30 hours

NARAYANA ENGINEERING COLLEGE:NELLORE													
II-B.Tech	ELEC	TRICAL (	CIRCUIT A	NALYSIS	AND SIM	ULATION	I LAB	R2021					
	(21EE2502)												
Semester	H	Iours / Wee	ek	Total	Credit		ks						
	L	Т Р		hrs	С	CIE	CS	TOTAL					
II	0	0	3	48	1.5	40	60	100					
Pre-requisi	re-requisite: Basics concepts of Electrical Circuits & Basics of Laplace transform												
Course Obj	ectives:												
The objectiv	es are to s	tudy:											
1. To design	electrical s	systems.											
2. To analyz	e a given n	etwork by	applying va	rious Netw	ork Theorei	ms.							
3. To measu	ire three pl	nase Active	and Reacti	ve power.									
4. To under	stand the lo	ocus diagra	ms										
Course Out	t <b>comes</b> : Af	ter succes	sful compl	etion of th	e course, tl	ne student	will be ab	le to:					
CO 1	Analyze	the three p	ohase circu	its for ider	ntification	of utilizati	ion in Pow	er system.					
CO 2	Examine the transient response of series and parallel circuits with different												
	combinations of R, L and C by using AC / DC supply.												
CO 3	Identify the various parameters to analyze the transmission and distribution system												
	in electrical engineering.												
CO 4	Model th	e differen	t types of f	filters for u	understand	the pass b	and and a	ttenuation of					
	the vario	us signals.	~ 1										
		2											

## **CO-PO & PSO Mapping:**

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3				2		1	2	2	2	2	2	2
CO2	3	3			2	2			2	2	2		2	2
CO3	3	3				2			2	2	2	2	2	2
CO4	3	3	3		2	2		1	2	2			2	2

1 – Low Level; 2 – Moderate Level; 3 – High Level

# **List of Experiments**

TASK-1 - Analysis of three phase circuits
Dbjective:
To verify phase voltage and line voltage in balanced and unbalanced three phase circuits.
<b>TASK -2 Measurement of Power in three phase Star and Delta Connected loads</b>

## **Objective:**

Measurement of active power of an 3-  $\Phi$  balanced load using 1-  $\Phi$  Wattmeter.

# TASK-3 Measurement of 3-Phase Power by Two Wattmeter Method for Unbalanced Loads

# **Objective:**

To measure the reactive power consumed by a 3 phase load using 2 wattmeter method.

# Task -4 Transient response of RL and RC circuit

### **Objective:**

To verify the **Transient response of RL circuit and to find the time constant of RL and RC network.** 

### TASK-5 Transient response of series and parallel RLC circuit

#### **Objective:**

To verify the Transient response of series and parallel RLC circuit

# TASK-6 Low pass & High pass filter

## **Objective:**

To design low pass filter and to plot output verses frequency characteristics

## TASK-7 Z & Y parameters

## **Objective:**

To calculate and verify Z -parameters and Y- parameters of given two-port network

TASK-8 Transmission and Hybrid Parameters

#### **Objective:**

To calculate and verify 'ABCD' parameters and h- parameters of given two-port network

TASK-9 Simulation of Transient Response of DC and AC circuits

#### **Objective:**

To simulate the transient response of simple DC and AC circuits using PSpice

# TASK -10 Simulation of k and m- pass filters

#### **Objective:**

To simulate the k and m-pass filters using PSpice.

# Additional Experiments:

# Virtual Lab:

- 1. Parallel RC Circuits
- 2. Parallel LC Circuits
- 3. Series RL Circuits
- 4. Series LCR Circuit
- 5. Parallel LCR Circuits

#### Text Book(s):

1. Simulation of Power Electronics Circuit, M B Patil, V Ramanarayan and V T Ranganat, Alpha Science International Ltd., 2009.

#### **Reference Book(s):**

1. A Sudhakar, Shyammohan S Palli, "Circuits & Networks", Tata McGraw-Hill, 4th Edition, 2010.

2. WillamHayt.jr, Jack E.kemmerly,Steven M.Durbin, "Engineering Circuit analysis" Tata McGraw-Hill, 8th Edition2012

3 A Chakrabarthy, "Electric Circuits", Dhanpat Rai & Sons, 6th Edition, 2010.

4 Rudrapratap, "Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers", Oxford University Press, 1 st Edition, 1999.

NARAYANA ENGINEERING COLLEGE:NELLORE											
II-B.Tech	LINEAR	CONTRO	L SYSTEN	1S & SIMI	JLATION	LAB (21E	EE2503)	R2021			
Semester	Н	lours / Wee	k	Total	Credit	Max Marks					
	L	Т Р		hrs	С	CIE	CS	TOTAL			
II	0	0	3	48	1.5	40	60	100			
Pre-requisi	re-requisite: Basics concepts of Electrical Circuits & Basics of Laplace transform										
Course Obj	ectives:										
The objectiv	es are to st	tudy:									
1.To provide	e practical k	knowledge	for Time re	sponse of s	second orde	er system					
2. Determin	e of transfe	er functions	s of various	systems ar	nd control c	of it by diffe	rent Metho	odologies			
3. The chara	acteristics o	f Magnetic	Amplifier,	servo mecł	nanisms wh	ich are help	oful in auto	matic control			
systems											
4. Determin	e the stabil	ity analysis	of differen	nt system b	y using PSP	ICE and MA	TLAB				
5. To study	the closed l	oop perfor	mance for t	the given p	lant using F	P, PD, PI, PI	O Controlle	rs.			
6. The design of controllers/compensators to achieve desired specifications.											
Course Outcomes: After successful completion of the course, the student will be able to:											
<b>CO1</b> Get the knowledge of feedback control and transfer function of DC servo motor											
CO 2	Model the system and able to design the controllers and compensators										
CO 3	Get the knowledge about the effect of poles and zeros location for second order										
	systems										
	-										

CO-PO Mapping														
СО	PO												PSO	
	PO P											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2			3				2	2		3	3	3
CO2	2	3	3	3	3				3	2		3	3	3
CO3	2	2	3	2	3				2	2		3	3	2
	1: Low 2-Medium 3- High													

#### Task-1:Time Response of Second Order System

Objective: To study the response of a second order system considering a series RLC circuit.

# Task-2: Characteristics of Synchro pair

**Objective:** To study the characteristics of synchro transmitter-Receiver pair.

Task-3: Characteristics of AC Servo Motor

**Objective:** To draw the characteristics of ac servo motor and to calculate parameters of motor K1 and K2

Task-4: Characteristics of DC Servo Motor

## **Objective: :**

1.To obtain the Speed Vs voltage characteristics of the DC motor

2.To obtain Speed Vs Torque characteristics and Ia Vs Torque Characteristics

## Task-5: Transfer Function of DC Machine

### **Objective:**

1.To determine the Transfer function of a given DC motor.

2.To determine the transfer function of a D.C. generator after determining the various constants.

# Task-6: Characteristics of Magnetic Amplifier

Objective: To determine the characteristics of magnetic amplifier in three modes

1) Series connected magnetic amplifier

2) Parallel connected magnetic amplifier

3) Self saturated magnetic amplifier.

# Task-7: Lag and Lead Compensation – Magnitude and Phase Plot

**Objective:** To Plot Magnitude and Phase Plot

## Task-8: Effect of P, PD, PI, PID Controller on a Second Order System.

Objective: To study the effect of P, PD, PI, PID controllers on a second order system.

**Task-9:** Temperature Controller Using PID

**Objective:** To study the closed loop PID control in a temperature process.

## Task-10: Programmable Logic Controller.

**Objective:** To Study and Verification of Truth Tables of Logic Gates, Simple Boolean Expressions and Application of Speed Control of Motor

Any two simulation experiments are to be conducted:

Task-11: Linear System Analysis Using MATLAB.

**Objective:** To Determine the Time domain specification and Steady state errors for given linear systems theoretically and practically

Task-12: Stability Analysis (Bode, Root Locus, Nyquist) of Linear Time Invariant System Using MATLAB

**Objective:** To Plot the Root Locus, bode ,Nyquist) of a given Transfer Function using MATLAB

## Text Book(s):

1. Simulation of Electrical and electronics Circuits using PSPICE - by M.H Rashid, M/S PHI Publications.

2. MATLAB and its Tool Books yser's manual and - Mathworks, USA

3. I. J. Nagrath and M. Gopal, "Control Systems Engineering"5th edition, New AgeInternational (P) Limited Publishers, 2007.